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Abstract

Laser-based detection of objects and features is becoming increasingly common due to the high
accuracy of these sensors and their dropping costs. One of the biggest challenges in the use
of laser-based measurements is to track the motion of multiple moving objects simultaneously
and in situations where a moving object might be temporarily occluded, for example a vehicle
moving behind another vehicle relative to the sensors position. In such situations, accurate
motion predictions are essential.

This thesis develops motion-prediction models suitable for laser-based multi-object tracking
systems. In the literature, a number of different approaches have been studied. However, most
of them cover a limited set of models or the model is too conservative to take into account
any previous information of the object. In this thesis, an online dynamic model is applied to
approximate the motion of the object. The advantages of this model include: a) It does not
need the prior knowledge of the object’s motion dynamics; b) It can deal with motion changes by
updating periodically. These dynamic model predictions are evaluated by comparison to known,
simulated data. Then, the approach is tested by using field-measured range data collected in
urban scenes. The results show that the dynamic motion model-based multi-tracking system can
track different dynamic motions and be robust to the motion changes, and can often predict the
states of occluded objects.
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Chapter 1
Introduction

1.1 Motivation

The problem of detecting and tracking multiple objects has been extensively studied for several

decades; e.g., see [1]. Numerous radar-based tracking systems have been applied in military [2],

ground-control systems in airport [3], meteorology [4], and other areas. Besides radar, many

different types of sensors have been applied in tracking systems, for instance sonar, IR sensors,

cameras, etc. In recent years, researchers have begun to study tracking systems based on laser

rangefinders due to its portability and accuracy. Laser rangefinder tracking systems are now

employed in many in-vehicle tracking systems for autonomous driving and collision alarms. In

this thesis, a single stationary LIDAR-based multi-object tracking system with dynamic modeling

technique is designed and evaluated.

1.2 Multi-object tracking system

The general data processing steps within a multi-object tracking system is summarized in Fig-

ure 1.1. During the detection step, the raw data obtained by the sensor is captured by the

system, and the foreground data is partitioned from background data and separated into differ-

ent segments. Once the foreground objects are detected and grouped, the problem of multi-object

tracking becomes the problem of estimating the dynamic states of each object. Generally, this

estimation consists of two parts: Data Association and Filtering [5]. Data association in the

multi-object tracking problem seeks to match the observations from the sensor to corresponding

existing tracked objects. Filtering is applied to improve the estimate of the state by combining

recent observations with models of object behavior.

The selection of the motion model used in data filtering is one of the most crucial problems

in multi-object tracking systems. This model is not only used for data filtering, but also for

predicting the motion of any temporarily occluded targets. In real traffic scenes, although the
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Detection
Data 

Association

Data 

Filtering

Figure 1.1. Summary of multi-object tracking system

object tends to keep the same motion for a short time interval, the motion model changes over

time. For example, the model of a vehicle driving through a stop sign can be summarized as

deceleration-stop-acceleration. Therefore, it is difficult for simplistic predefined motion models

to approximate the dynamics of the moving objects accurately all the time.

Later chapters provide a more comprehensive discussion of the literature, but a preliminary

review of methods illustrates the key challenges. In the most basic approach, some researchers

assume that the objects can move in any direction with uniform probability, and thus they

can apply Brownian motion models [6]. The drawback of this approach is that the predicted

trajectory may spread out over a broad area because of the uniform distribution. In the approach

called Interacting Multiple Models (IMM), different models are run in parallel and their outputs

are then merged to estimate the states. Since the candidate models include different types of

motion assumptions - constant velocity, constant acceleration, and turning for example - the

IMM approach is general enough to cover different types of common motions. Nevertheless,

IMM approach has several significant parameters to be set, e.g. the selection of the candidate

models, and thus is not always practical.

To address this problem, this work uses dynamic models to describe the observed motion

without any prior knowledge of object motions. The model is identified online by processing

valid, recent observations and updated periodically. It is different than IMM because, instead of

running candidate models in parallel, a model is identified online from previous measurements.

The results of this thesis show that the proposed model can provide good motion predictions,

including the ability to adapt to changing motions. One crucial parameter in this approach, the

order of the dynamic model, is determined by experiments.

1.3 Thesis Organization

The thesis is organized as follows: Chapter 2 briefly introduces the history of multi-object tracking

systems and reviews the techniques used in those systems. Chapter 3 describes the instruments

of the hardware system and the experiment protocol. The algorithms and methods applied in

this thesis are presented in Chapter 4. In Chapter 5, the results and discussion are given to

demonstrate the proposed methods. Chapter 6 concludes the thesis and provides ideas for future

work.



Chapter 2
Related Work

The problems of Detecting and Tracking Moving Objects (DATMO) have become more and

more crucial in advanced applications of vehicle automation, collision avoidance, and intelligent

surveillance. The complicated motions and patterns of normal and abnormal traffic makes this a

daunting problem. Especially under extremely crowded circumstances, for instance traffic during

rush hours or situations where there are mixed pedestrians and vehicles, temporary occlusion and

ambiguity caused by close targets are especially challenging for stable tracking. During recent

decades, extensive studies on this subject have been conducted that have analyzed different

sensors as well as introducing new and improving available algorithms [1, 5]. This chapter

reviews the development of various approaches for DATMO problem.

2.1 Early days: Vision-based tracking systems

Before 2000, due to the relatively low spatial resolution and scanning speed of available dis-

tance sensors (sonar, radar and laser-based rangefinders), researchers tended to develop methods

based on visual signals [8]. The visual information, including color and appearance, makes some

detection and tracking applications easy to implement through the use of image flow. Several

vision-based road following and lane detection systems have been developed [9, 10]. Although

many of the proposed image-based tracking systems worked quite well in predicting the trajec-

tories of vehicles [11, 12] or people [13], they were found to be hard to implement in practice.

There is not sufficient resolution from image-based approaches for applications requiring accu-

rate distance information, for instance the collision avoidance system and ego-motion estimation

system [14]. Additionally, Lindstrom and Eklundh summarized other key limitations of camera-

based tracking systems including: cameras have a field-of-view that is too narrow; the visual

appearance of a feature is not robust to position or lighting changes; and the visual processing

gives little explicit distance information . In order to address these limitations, radar and other

distance sensors began to draw researchers’interest.
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2.2 The late 1990s: Introduction of laser rangefinders

Introduced several decades ago (Bachman, 1979), laser based radar systems, also called laser

rangefinders or LIDAR, combines the advantages of many traditional radar techniques. This

sensor obtains the relative distance between the sensor and nearby objects by sending out the

laser beam towards the target and calculating the time difference between sending and receiving.

A key advantage of this approach over vision systems is that laser rangefinders are not sensitive

to target illumination.

As an electro-optical sensor, LIDAR usually operates on a short wavelength which leads a

narrow beam width. As a result, typical LIDAR systems have relatively fine spatial resolution.

Because of these merits, many applications based on LIDAR measurement techniques have been

developed since the 1990s, discussed below.

2.2.1 Historical development of laser-based tracking system

At the beginning, researchers tended to use the accurate distance information from the laser

rangefinder to solve the robot motion estimation problem [16], and possibilities of applying this

technique to tracking systems were considered [17]. Meanwhile, Meier and Ade’s work and

Sobottaka and Bunke’s research proved the feasibility of tracking objects by distance information,

although the former used coarse 3D information from the infrared sensor and the latter used range

cameras [18, 19]. Earlier than that, in 1995, researchers from Robotics Institute of CMU began

to use range sensors to perform obstacle detection [20]. Following that, laser intensity-based

tracking systems were intensively studied by A. Hancock (1999) in his doctoral thesis [21].

Since the late 1990s, research on tracking objects based on laser range data has been rapidly

gaining popularity. As shown in previous Figure 1.1 and discussed in Chapter 1, the problem

of detecting and tracking multi-object generally consists of three parts: Detection, Filtering and

Data Association [5]. Detection addresses the problem of extracting the foreground from the raw

data. Filtering is applied to improve the estimate of the target state by combining the existing

model and observation. Data association deals with matching the observations from the sensor to

existing tracked objects. This “matching” process for moving objects can be extremely hard for

crowded scenes. The following section will introduce the history of laser-based tracking systems

based on the different algorithms they use.

2.2.2 Moving objects detection for laser-based tracking system

Because the segments obtained by detection part are used in the data association algorithm

step for matching the existing tracks, the performance of detection is very significant to the

whole tracking system. To improve this part, many algorithms for background subtraction,

segmentation and classification have been discussed.
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2.2.2.1 Background subtraction

For LIDAR sensors operating in cluttered environments, the raw data contains multiple sources

of information including the noise, background, and of course the foreground moving objects.

As seen in Figure 2.1, the foreground moving objects are marked by red rectangles and number

the other dots represent the stationary background. Most tracking systems apply a “background

filter” first before processing the data, and the goal of a background filter is to separate the

foreground and background, and to remove noise.

Background subtraction techniques have been widely used for detecting moving objects from

static cameras [23]. One approach, presented by Fod et,al., considers the different features

provided by LIDAR within a background model based on range information [24]. In order

to simultaneously detect moving targets and maintain the position of stationary objects, an

occupancy grid map is employed to detect moving objects [25]. The grid-based map technique has

been widely used in Simultaneous Localization and Mapping (SLAM) for representing complex

outdoor environments (Figure 2.1) [7, 35, 59]. Due to the few features extracted from LIDAR

data, by building motion-map and stationary-map separately, Wang showed this approach is

more robust than a feature-based approach (Figure 2.1) [7].

Figure 2.1. Moving objects detection by grid map (from [7])

2.2.2.2 Segmentation

The data segmentation process seeks to divide the collected data points into distinct segments

such that points associated with the same object are grouped together. As a first criterion, a

common method is to perform segmentation based on a distance threshold. Examples of this

approach can be found in work done by Wang et al., Maclanchlan and Mertz and Vu et al.

[28, 35, 66].
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As the next step, consecutive points on the same object are sought. This is challenging because

of the limited angular resolution of the LIDAR sensor in this study. Specifically, the distance

between two consecutive scan points on the same surface can change dramatically depending on

the varying position and angle of the surface relative to the sensor. For example, the side of

a truck or vehicle perpendicular to the laser beam will have consecutive points that are closely

spaced. Conversely, a truck that is nearly parallel to the sensor’s scan direction may only have

a few points impacting the side of the vehicle, and these points may be very widely spaced

(Figure 2.2).

 

 
Figure 2.2. Example of angular resolution limition

A possible solution to this problem has been suggested by Sparbert et al. and Mendes et al.

who used an adaptive distance threshold to perform segmentation [29, 30]. Their methods are

based on the distance between data point to the LIDAR. In their method any two consecutive

points rk and rk+1 will be regarded as belonging to the same object if the distance between them

rk,k+1 fulfill the Equation 2.1:

rk,k+1 ≤ C0 + rmin ·
tanβ

√
2 · (1− cosφ)

cos(φ2 )− sin(φ2 )
(2.1)

where rmin = min{rk, rk+1}, φ is the angular resolution of the LIADR and β represents the

maximum angle of the surface to x axis when the object could be distinguished as a unique one.

Because the algorithm mentioned above is based on the consecutive beams, it is very sensitive

to the noise point. Therefore, in this thesis, a density-based spatial clustering algorithm is applied

for data segmentation. This clustering algorithm is a well-known data mining method named

“Density-Based Spatial Clustering of Applications with Noise” (Figure 2.3) [31]. DBSCAN is

a clustering method based on the notion of “density reachability”. A point, q, is defined as

density-reachable from a point p, if the cardinality of set Q is greater than a given number N

and for every element qi in Q Equation 2.2 is satisfied.

d(qi, p) < ε, qi ∈ Q (2.2)

where d(qi, p) is the distance between qi and p and ε is a given threshold.

To avoid asymmetry of density-reachable points, density-connected is introduced. Here, two

points p and q are density-connected if there is a point O such that both p and q are density-

reachable from O. Given the distance eps and minimum number of points to form density-

reachable N , the cluster could be defined by two constrains:
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• All points within the cluster are density-connected;

• If a point is density-connected to any point of the cluster, it belongs to this cluster;

B

p

q

A

ε

Figure 2.3. Examples for DBSCAN. ε is the radius of the circle and N is 2. Points p and q are
density-connected and all the red and yellow points form a cluster. Point B is noise.

DBSCAN is useful because it can deal with arbitrary shaped clusters without knowing the

number of the clusters, which is very important for the LIDAR data in this thesis. Because the

cluster with numbers of elements less than N is considered as noise, this de-noise characteristic

is also very useful (Figure 4.6). Since most physical objects, including vehicles and people, are

well defined by lines when viewed in profile, the minimum number of points required to form a

cluster is set to 2. The distance is empirically chosen as 120cm.

2.2.2.3 Occlusion

Occlusion also presents a problem in segmentation, where the shadow of one object may partially

block the view of a second object, causing segmentation to try to classify the single second

object as several different objects moving in unison (Figure 2.4). To avoid dividing one vehicle or

object into several segments led by partially occluded and black surfaces, Petrovskaya and Thrun,

Aycard and Ogawa et al. implemented a geometric vehicle model that requires continuity between

disjoint point segments [47, 52, 81]. Other researchers have solved this problem by performing

image processing approaches before clustering step. In these approaches, the LIDAR image is

processed as a 2D birds-eye-view image, and afterwards image-processing methods are applied.

For example, Zhao and Thorpe used Hough transformation to extract the lines [22], and Burke

applied a median filter following principal component analysis [40].

2.2.2.4 Classification

A traffic scene can be quite complicated because it contains different mixtures of vehicles, pedes-

trian, pets and backgrounds. Usually, the motion dynamics are significantly different among the
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A

LIDAR

1

2

B

Figure 2.4. Example of partial occlusion. Vehicle A is occluded by pedestrian B, so it is divided into
two parts: 1 and 2 in the LIDAR data.

classes of objects, but not always. For example, the velocity of a pedestrian normally is 5 mph

and the velocity of a vehicle is normally much higher than this. But there are speeds, particularly

near construction zones, intersections, and stop signs, where the speeds of all objects may be

similar.

More suitable classification methods have been investigated in surveillance and traffic flow

analysis literature. Specifically, object classification in laser-based multi-object tracking system

has been studied extensively [29, 30, 34, 36]. Mendes, et al. uses a voting scheme presented by

[37]. By considering all the hypotheses over time, an object is assigned with a class until the

confidence level reaches a reasonable value [30]. Although the features used are not discussed

in detail, the results showed that voting classification approach can assign the right class after

several frames (Figure 2.5).

Figure 2.5. Voting scheme based classification, where:+→ pedestrian; ∗ → car; ◦ → truck; × → post;
�→ wall; � → bush [30]

Also based on the voting scheme, Nashashibi applied the following rules to vote [36]:

• A vehicle has minimum width of 1 meter;

• A L-shaped object is considered a vehicle;

• A partially occluded segment is considered as a vehicle;
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• Motorcycle is a small non-occluded object with width less than 1 meter;

• Certain number of regularly aligned and non occluded obstacles, in other words, comes out

repetitively, are considered to be environment elements;

Figure 2.6 presents this rule-based classification method, and the results show that this approach

is fairly successful.

Figure 2.6. Rule based classification [36]

2.2.3 Filtering methods for laser-based tracking system

In the multi-object tracking literature, filtering is necessary to smooth the trajectory and to

predict the vehicles pose state when the observation cannot be obtained directly. To perform

this filtering, many Bayesian based filters, for instance the Kalman Filter, the Extended Kalman

Filter, the particle filter and the IMM algorithm, are widely used.

2.2.3.1 Kalman Filter

The Kalman Filter is an optimal recursive filter designed to estimate the state of a dynamic

system from multiple sequential measurements [82]. The Kalman Filter is generally applied to

linear system models that have Gaussian noise both in the state propagation (dynamics) as well

as the measurement model. The state is estimated by the following general equations recursively.

The Kalman Filter assumes a dynamic system model of the form:

xk = Axk−1 +Buk + wk (2.3)

yk = Cxk + vk (2.4)
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where xk denotes a state of system at discrete time k, A a state matrix, uk an input, yk a

measurement, wk ∼ N(0, Q) and vk ∼ N(0, R) are the zero mean Gaussian white noise with

covariance Q and R. The states are recursively updated as:

x̂′k = Ax̂k−1 +Buk (2.5)

P̂ ′k = APk−1A
T +Q (2.6)

Kk = P̂ ′kC
T [CP̂ ′kC

T +R]−1 (2.7)

x̂k = x̂′k +Kk[yk − Cxk′] (2.8)

Pk = [I −KkC]Pk
′ (2.9)

where Kk is the Kalman Gain and Pk is the covariance of the a-posteriori estimate error.

Given a role as a classic filtering method in signal processing, the Kalman Filter has been

widely applied in the laser-based tracking systems [22, 24, 26, 27, 28, 33, 34, 35, 38, 39, 40, 41].

Among them, the initial and most widely cited research is briefly presented below.

In 1998, Zhao and Thorpe introduced a real-time car tracking system that is based on a laser

range-finder [22]. Based on the framework of Interactive Multiple Model (IMM) (Section 2.2.5.3),

with three significant motion models and extended Kalman Filter, this system was evaluated

using real range data from the laser scanner mounted on Navlab5 traveling on Highway. Results

showed it could provide accurate motion estimates, motion classification and reliable maneuver

detection. In a different approach, Wang, et al. tried to resolve the simultaneous localization

and mapping (SLAM) problem as well as the detection and tracking moving objects (DATMO)

problem at the same time [27]. The advantage of this approach is that the map from SLAM

can help to detect moving objects, and in turn, the map will be more reliable after removing the

moving objects detected and tracked by DATMO. See Figure 2.7 and Figure 2.8 for example.

After combining several algorithms (IMM, extended Kalman Filter) demonstrated by Zhao and

Thorpe, Wang, et al. improved the SLAM with DATMO system and tested it using 100 miles

real range datarecorder from a moving vehicle [28]. The results showed the effectiveness of this

approach (Figure 2.9). A Kalman Filter based on a linear model has also been applied for

people tracking [24]. By searching the small neighborhood region of every “blob” (object) and

adding small errors in velocities, this approach could track several moving people in a small room

(Figure 2.10). This approach of combining IMM and EKF was also discussed by Keampchen, et

al. who included a “Stop and Go” model in their IMM approach [42].

2.2.3.2 Particle Filter

Instead of Kalman Filter, several multi-object tracking systems apply a particle filter or sim-

ilar Monte Carlo algorithms because they can deal with nonlinear and non-Gaussian models

[43]. Particle filter estimates the posterior over unobservable state from sensor measurements

[44]. Because the location of pedestrians cannot be easily characterized by a general dynamic
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Figure 2.7. SLAM without DATMO [27]

Figure 2.8. SLAM with DATMO [27]

model, a particle filter is first used for pedestrian tracking [45]. Their results suggest that a

sample-based particle filter performs better than a Kalman filter (Figure 2.11) in this particular

scene. If the environment is fixed and the map is previously obtained, by breaking the high

dimensional particles into two sets of lower dimensional particles and one conditionally depended

upon the other, the particle filter showed the ability to deal with simultaneous robot localization

and people-tracking problem [6] (Figure 2.12). Frank, et al. applied sequential Monte Carlo

approach on multi-object tracking and tested it off-line by real laser range data [46]. Although

the particle filter outperforms Kalman Filter in situations dealing with unpredictable motion

tracking problem, it has not been extensively applied in laser-based tracking system until recent

Figure 2.9. SLAM and DATMO with advanced algorithm [28]
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Figure 2.10. Trajectory of people obtained by tracking with Kalman Filter [24]

years because of the high computational complexity [28]. Recent example include Petrovskaya

and Thrun ’s work where they applied a Rao-Blackwellized particle filter (RBPF) for their robot,

Junior, who won the second place in the 2007 DARPA Urban Grand Challenge [47]. RBPF was

first introduced by Doucet, et al. in 2000 [48] and has been applied in DATMO problems using

both simulated data and real data [49, 50, 51].

Figure 2.11. Comparison of Kalman Filter (right) and Particle Filter (left). The arrow indicates the
trajectory of the object. The Kalman Filter predicts the object into the obstacle. [45]

2.2.4 Data association approaches for laser-based tracking system

Data association seeks to match data points to a specific object, and it is a significant step for

the DATMO problem resolution. Because of the limited features provided by the distance sensor,

accurate data association is very difficult, especially for crowded scenes. As the most intuitive

approach to assign the nearest segment to the object, a Greedy Nearest Neighbor (GNN) filter

was widely applied in the early era of tracking [5]. This method is simple to implement and

computationally simple, and as a result many tracking systems still use it as the main data

association approach [35, 38, 52]. Because the GNN is a simple implementation with acceptable

error, this thesis also applies the GNN filter to do the data association.
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Figure 2.12. Simultaneous robot localization and people-tracking [6]

For the completeness of the literature review, two more advanced well-known Bayesian ap-

proaches are introduced here: 1) multiple hypothesis tracking (MHT) algorithm and 2) joint

probabilistic data association (JPDA). Though they were developed several decades ago, their

application has grown extensively in the last ten years as the result of increasing computational

power in readily-available processors [53, 54]. Recently, a batch of multi-object tracking sys-

tems have achieved notable success by applying Markov chain Monte Carlo data association

(MCMCDA) [55, 56, 57]. Unlike other data-association methods that seek to maintain or test all

possible data assignments, MCMCDA uses Markov chain Monte Carlo sampling [58]. Vu, et al,

applied this data association for laser-based tracking systems and obtained positive results [59]

(Figure 2.13).

Figure 2.13. Tracking results for laser-based tracking systems using MCMCDA [59]
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2.2.4.1 Greedy Nearest Neighbor (GNN) Filter

The simplest and probably the most widely applied data association approach is the Greedy

Nearest Neighbor Filter.The NNF only takes into account the prediction of the existing track

from the last frame and the new observation obtained from the sensor. For each new data set,

every segment is assigned to the nearest previous track after predicting motions for previous

tracks from previous measurements to the current measurement. Prassler, et al. introduced a

people tracking system for a crowded scene (railway station during rush hour) [61]. Considering

that a person’s location cannot be easily characterized by a general dynamic model, the algorithm

had to rely almost entirely on the greedy nearest neighbor filter to track people for consecutive

range images. The result indicate that this system could track 5 to 30 moving objects in real-time

(Figure 2.14).

Figure 2.14. People tracking results in a railway station [61]

Most laser-based vehicle tracking systems usually apply the Mahalanobis distance as the

proximity metric for GNN. The Mahalanobis Distance was introduced by P.C.Mahalanobis in

1936.This measurement is used instead of Euclidean distance because it considers the geometric

information implicit in: that they primarily move forward and not side-to-side.

For a point x and a group of points Y , the Mahalanobis distance between them is defined as

DM (x, Y ) =
√

(x− µY )TS−1Y (x− µY ) (2.10)

where x is a n dimensional vector (x1, x2, ..., xn)T and Y is a set of n dimensional vectors,

(Y1, Y2, ..., Yn)T , Yn = (yn,1, yn,2, ..., yn,m). µY ∈ n× 1,S ∈ n× n are the mean value vector and

covariance matrix of Y . The value DM (x, Y ) is called the Mahalanobis distance between x and

Y .

For the 2-dimensional data, since the covariance matrix represents the axis of the ellipse

covering the distribution of the data, it can represent the direction and size of the entire data

cluster. For points with the same mean value of the Euclidean distances to every point in the

data cluster, the ones near the long axis direction have a small Mahalanobis distance versus the

ones near the short axis direction. This property is very useful for finding the corresponding

feature points of a vehicle since the vehicle always tends to move towards the long axis direction.
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The difference between the two metrics is illustrated by the following example.

In Figure 2.15, the circle points are a measurement of a vehicle in the last frame, and the

star points represent two probable locations of the vehicle in the current frame. If the Euclidean

distance is used to measure the distance, the Euclidean distance between the probably positions

and the data set are De(A) = 252.5 and De(B) = 361.4. However, as a vehicle, point B should

have a higher probability of being the next cluster position than point A since it´ s nearly

impossible for a vehicle to suddenly move laterally. If the Mahalanobis distance is applied, then

the distances become Dm(A) = 77.9 and Dm(B) = 6.6, which illustrates that the association

along the long axis of a data cluster tends to generate trajectories consistent with expected vehicle

motion. Similarly, if the trajectory of a cluster is known, the Mahalanobis distance metric can

use weightings aligned with the expected trajectory. Thus, the Mahalanobis distance better

associates new measurements to a vehicle projected along its probable path, not to vehicles that

happen to be close to the new measurement but whose paths are not nearby the measurement

[38].
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Figure 2.15. Example of Mahalanobis Metric

In this thesis, for easiness implementation with acceptable error, GNN filter is applied as data

association approach. The advanced data association algorithms are reviewed following.

2.2.4.2 Joint probabilistic data association (JPDA)

To eliminate association ambiguity in complex scenes, especially for multi-objective tracking,

JPDA is a data association algorithm that takes into account every possible association. It

computes the Bayesian estimate of the correspondence between segments detected by sensor and

possible existing tracks and forms a hypothesis matrix including all possible associations. The

assignments with highest probability are picked out.

As an example of JPDA, Schulz applied sample-based JPDA in laser-based tracking system

at first and showed its effectiveness for the multiple people tracking problem (Figure 2.16) [45,

62]. By modifying JPDA to separate highly-correlated target-path combinations from poorly-
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correlated combinations, Frank, et al. proposed two extended JPDA approaches and tested

them off-line (Figure 2.17) [46]. The robot in DARPA 2007 challenge, Junior, mentioned earlier

in Section 2.2.2.2, also used this JPDA approach.

Figure 2.16. Trajectory of tracking four people by sample-based JPDA: the left scene is the true, the
right is the estimated trajectory [62]

Figure 2.17. Results of racking four people: the left one is based on correlated samples and the right
one is based on independent samples [46]

2.2.4.3 Multiple Hypothesis Tracking (MHT)

Instead of considering just the information of one frame, Multiple Hypothesis Tracking (MHT)

is a multi-scan deferred decision logic tracking algorithm that keeps multiple alternative data

association hypotheses whenever the ambiguity situation occurs. Rather than combining these

hypotheses in JPDA method, all the hypotheses are propagated and the one with highest posteri-

ors is returned as solution. Since all potential tracks are maintained and updated, this method is

very useful when the target motion model is unpredictable. Although the number of hypothesis

may grow exponentially over time, MHT is still applied in many multi-object tracking systems,

supplementary with hypothesis deleting mechanism [26, 28, 63]. Wang, et al. also implemented

this method on Navlab for real-time road tests (see the previous Figure 2.9).
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2.2.5 Approaches for occlusion handling

When the targets are visible or partially occluded, nearly all the systems mentioned previously

are able to track them and obtain reasonable trajectories. However, when the environment is

crowded, for instance in the rush hour traffic and transport hub stations, the targets may occlude

each other, especially when some of them move close to the sensor. The temporary occlusion of

the objects may lead to mismatch when they return to view. To maintain estimates of the tracks

during occlusion, it is critical to have an estimate of the motion model of the objects during

occlusion [64].

In the early era of the laser-based tracking systems, some systems failed to keep tracking

when the target was temporary occluded [61, 65]. Figure 2.18 shows a situation where the track

is lost when the target is occluded.

Figure 2.18. Occlusion of an object may cause temporary loss-of-tracking of the occluded moving object
[61]

To some extent, this occlusion problem can be resolved using some of the previously-mentioned

filtering methods necessary in laser-based tracking systems. In literature, both single motion

model and multiple models have been applied. As an intuitive approach and possibly the most
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widely used method, one can predict motion during occlusion using the prediction steps of a

Kalman Filter along with the same motion model used in the “prediction/correction” steps of

the Kalman filtering process. This conditional updating process allows one to predict an object’s

position during occlusion [24, 26, 33, 38, 40]. Among this prior work, different motion models

are seen to demonstrate different performances. For convenience and easiness of implementation,

a constant velocity model is nearly the most common model for vehicle tracking. Since the

driver tends to keep the same speed for a short time, this model can readily solve the occlusion

problem. Unfortunately, the real traffic always includes different motion types for vehicles, for

example accelerated motion, turning and stopping. Not to mention the wondering people, whose

motion is nearly impossible to predict [45]. For this reason, the Interactive Multiple Model (IMM)

method has been applied broadly, which runs several Kalman Filters with different models parallel

and merge the outputs to predict the positions [22, 28, 42, 52]. On the other hand, unlike the

explicit motion model of Kalman Filter, the probability based model in a particle filter can deal

with complex dynamic motion [43].

2.2.5.1 Explicit model with Kalman Filter

As reviewed in filtering section, Kalman Filter is widely applied in multi-object tracking litera-

ture. Therefore, many researchers used the same motion model to propagate the states during

occlusion. Fod, et al. used a linear model to estimate the motion recursively [24]. After data as-

sociation, the new state of an object is the linear combination of the predicted state vectors from

the matched object of last frame. The weighting is calculated by minimizing the sum-of-squares

error matric. The result in previous Figure 2.10 shows it is an effective approach for multiple

target tracking.

As the less complicated model, the constant velocity model is extensively used to describe

the state of the targets with acceptable error. Streller, et al. used position, velocity, orientation

and rotational speed to describe the target state[26], while Burke and Fayad with Cherfaoui

only considered the position and velocity [38, 40]. The motion model used by Streller, et al. is

presented as Equation 2.11:

Xk+1,n =



1 T 0 0 0 0

0 1 0 0 0 0

0 0 1 T 0 0

0 0 0 1 0 0

0 0 0 0 1 T

0 0 0 0 0 1


Xk,n

Xk,n = (xk,n, vxk,n, yk,n, vyk,n, ϕk,n, ωk,n)T

(2.11)

where Xk,n represents the state of object n at discrete time k, (xk,n, yk,n) the position, vxk,n, vyk,n

the velocity, ϕk,n the orientation of the object ωk,n the rotational speed and T the sampling time.

This model could predict the state of the objects with acceptable error, and deal with some
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occlusion situations. In Figure 2.19, object 10 is temporary occluded by object 4 and reacquired

by the tracking system later.

Figure 2.19. Tracking by constant velocity model. Object 10 is tracked through occlusion, where blue
dots represent the trajectories of the moving objects, blue lines stationary obstacle.[40]

Without any explanation, Maclachlan applied a single dynamic model with linear acceleration

and constant turn rate [66]. Although the occlusion situations were not discussed in detail, this

system has been tested in a prototype collision warning system on two transit buses during 7000

km of regular passenger service.

2.2.5.2 Probability model with particle filter

Besides those explicit models, multi-object tracking systems with particle filter tend to apply

Brownian motion model [6]. Since this model even does not attempt to model the dynamics but

assume the target could move to any direction with uniform probability, it could be applied for

targets without a consistent motion behavior, for instance people. It works fairly well for short

duration of occlusion (Figure 2.12). However, the prediction could become equally spread out over

a broad area as the occlusion time increases, because all of the motion is represented as dispersion.

Considering that humans do not move randomly, some more sophisticated motion models have

been proposed [67, 68, 69, 70]. Assuming that people tend to follow an “efficient path” rather

than a random one, Bruce and Gordon added common destinations in the environment and then

used a path planner to predict the probably routes between the current location of human to

those destinations [70]. Figure 2.20 shows pedestrian passing an obstacle. The Brownian model

(left) tends to spread out after a while, but the plan-based model (right) provides the more

concentrated distribution and gives the right prediction (green dots).The result showed a better

performance than Brownian model.

2.2.5.3 Interacting Multiple Models (IMM)

The IMM algorithm and its variants [71, 72] have been successfully implemented in many tracking

applications for overcoming the motion modeling problem by using more than one model [74,
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Figure 2.20. Tracking people during occlusion using Brownian model (left) and plan-based model
(right) [70].

73, 1]. The principle is to run several elemental filters with different possible motion models

in parallel. The final estimation of the state is obtained by merging the outputs of all filters

based on the distribution probability over the set of motion models. Zhao and Thorp applied the

IMM with three models: constant velocity, constant acceleration and turning model [56]. This

approach was able to predict the position of the object accurately enough so that it could be re-

acquired later (Figure 2.21). In some situations, however, the object may stop in its trajectory.

Considering this situation, one can add “stationary motion” model to IMM algorithm. This

approach was discussed as well [42, 76]. Although it could smooth the tracks of the target

(Figure 2.22), Coraluppi and Carthel claimed that this method tends to degrade the performance

for targets that may take the same path without temporary stop behavior [76]. Wang improved

this approach by adding moving-stop hypothesis tracking [7].

In Wang’s work, the probability distribution of different motion models is represented by a

Transition Probability Matrix (TPM) In practice, these critical parameters have to be defined.

At the beginning of data capture, these parameters are predefined without relating to the real

data [77, 78], and so unrealistic results may be obtained. To overcome this, several on-line

adaptive TPM estimation methods have been proposed [79, 80, 81] and these techniques show

improvements of this algorithm (Figure 2.16).
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Figure 2.21. Car tracking over missing data by IMM approach [22]

Figure 2.22. Velocity of the temporary stop target. Solid line represents the IMM with stationary
model and dash line the CV model. [42]

2.2.5.4 Dynamic Model

As shown above, a single explicit model is widely used since it is easy to implement. However,

since the dynamic of the objects cannot be represented by any specific model, for instance a

constant velocity model or a constant acceleration model, it may lose the track when the target

is occluded for a relatively long period. Although Brownian model is robust to all kinds of motion,

the random characteristic led to a wide spread in the prediction. The interacting multiple models

(IMM) algorithm combines the merits of both kinds of models above. This method runs a set of

candidate models in parallel and merges the outputs of all filters to obtain a relatively accurate

estimation. The drawback of this approach is that the choice of critical parameters used by the

IMM algorithm is still an open question and the temporary stationary motion is hard to address

by IMM. Based on above descriptions, a general time series dynamic model is applied in this
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Figure 2.23. Trajectory of people tracked by IMM with adaptive TPM. Green line represents the
ground truth, red line the trajectory with adaptive TPM and blue line the trajectory without TPM. [81]

thesis to predict the state of targets during occlusion.

Dynamic modeling has been theoretically studied and applied in dynamic computer vision and

image system [83, 84]. Because it provides more dynamics than any predefined simple model,

e.g. constant velocity model or constant acceleration model, Lim applied Caratheodory-Fejer

interpolation to identify the dynamics of the model [83]. Figure 2.24 shows that dynamic model

overcomes the constant velocity model.

Figure 2.24. Example of dynamic modeling for robust visual tracking [83]



Chapter 3
System Setup

3.1 LIDAR system

To test and evaluate the tracking system, a laser measurement system is constructed with the

instruments described in Table 3.1. The whole system is shown in Figure 3.1.

Table 3.1. List of instruments
Instruments Major Properties

SICK LMS 291 LIDAR

Range up to 80m
Angular Resolution 0.25◦/0.5◦/1◦

Frequency 18Hz/37.5Hz/75Hz
Measurement Resolution 10mm

Scanning Angle 180◦

DeviceMaster D139M 4-port device server
Csi/SPECO Regulated Power Supply 115VAC input, 24DC 2Amp output

410W Power Inverter Invert battery energy into AC power

Battery
Battery Warehouse High Performance

Marine Deep Cycle Battery
Panasonic Toughbook Save the LIDAR data

In the experiments, the LIDAR is working on 0.5◦ angular resolution and 37.5Hz frequency

and supplied by 24VDC. The power of the whole system is provided by two deep-cycle lead-acid

batteries. The batteries have enough capacity that the LIDAR system can work more than 6

hours without any external power supply. This DC voltage is converted to AC power using a

410W Power Inverter. The Panasonic Toughbook uses the AC power directly and the LIDAR

and device server uses the DC power converted by Csi/SPECO Regulated Power Supply. The

LIDAR measurements are transmitted via a high-speed RS422 serial cable on the device server

and sent to computer via a TCP/IP connection.
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Figure 3.1. LIDAR system

3.2 Experimental Protocol

The data is collected at two locations in Penn State University Park. To cover most urban traffic

scenes, a position on Park Avenue and the intersection between Curtin Road and Bigler Road

are chosen.

3.2.1 Park Avenue

As a road with 35 mph speed limit, Park Avenue can represent most normal urban roads. The

experiment was taken in February 9th between 11am to 1pm. Since the vehicles tended to drive

with a constant speed and only a few pedestrians were present around this location, this data set

could be used as a relatively simple test to evaluate the effectiveness of the system. Figure 3.2

shows the location on Google Map and Figure 3.3 is the picture of the location.

3.2.2 Intersection between Curtin Road and Bigler Road

Vehicles in real urban traffic scenes may have a complex dynamic motion model besides constant

velocity, for instance, the turning and move-stop-move model. This intersection was chosen for

data collection because it has a stop sign on every direction and many pedestrians involved in

this area. The data was collected during peak time (February 9th, 5pm-6pm). This data set

is used to test the robustness of the system to deal with complex dynamic motion models and

tracking pedestrians and vehicles at the same time. The location is shown in Figure 3.4 and
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Figure 3.2. The experiment location on Park Avenue

Figure 3.3. Picture of the experiment location on Park Avenue

Figure 3.5 shows a picture of this location.
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Figure 3.4. The experiment location of the intersection

Figure 3.5. Picture of the experiment location of the intersection



Chapter 4
Methodology

This chapter presents the methodology used for feature tracking in this thesis. A detailed

overview of each step is described in the sections that follow, but an overview of the entire

process, shown in the flow chart of Figure 4.1, is helpful to explain how each step relates to each

other.

Classification
Data 

Association

Stationary 

State Check

Objects 

Missing?

Update the 

position by 

estimation

Kalman 

Filter

Y

N

Pre-processing
Get New 

Frame

Figure 4.1. Flow Chart of entire process

The process begins when a frame of data is collected from a LIDAR system, with a “frame”

representing one LIDAR sweep. Each frame of the LIDAR data is pre-processed to remove noise

and to extract foreground information from background information. Next, the data is separated

into different segments and each segment is classified and labeled as either belonging to a vehicle

or a pedestrian. During the data association step, the system tries to match an object to the

nearest segment with the same label, which constrains vehicles classified in the current frame to

only match vehicle segments seen in previous frames.

If a new segment cannot be associated to a previously-existing object, it is stored for a short

period. Such stored segments are marked as missing and deleted if no prior or subsequent matches
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are found for several frames. If a segment is not found to match a new object, and the object

persists for a specific time interval, it is marked as a new object and added to the object list

for future tracking. Once the association is completed, each object’s position is predicted and

correlated with incoming data using Kalman filters. Objects remaining within a small boundary

for a long time interval are marked as stationary. If any object is marked as missing during the

association step, its new position will be estimated by the dynamic model. Finally, the system

obtains a new data frame and repeats the processing loop again.

4.1 Pre-processing

As discussed in Chapter 2, background subtraction is very useful to separate the foreground and

background, and to remove noise. In autonomous vehicle literature, to simultaneously detect

moving targets and maintain the position of stationary objects, an occupancy grid map [25]

is employed to detect moving objects. A grid-based map technique has been widely used in

Simultaneous Localization and Mapping (SLAM) for representing complex outdoor environments

[7, 35]. In this thesis, an intuitive approach is applied to build the grid map since the LIDAR is

fixed relative to the map, e.g. the LIDAR is only used for moving objects detection.

At the beginning, all the points with maximum distance from the LIDAR, e.g. those at the

limits of the LIDAR range, are regarded as open space and deleted (Figure 4.2). The pseudo-code

is:

onlimitdataDel(D)

for each beam j of data set D

L(j) = the length of the ith beam

if L(j) == max(D)

L(j) = NAN

return D

To form the occupancy map, the field of the LIDAR view is separated into 40cm×40cm grids,

which is empirically selected. At any time frame, if a grid is occupied by the segments detected by

sensor, its corresponding value will be increased by 1 and if no segment detected in this gird, the

value will be decreased by 1. After a reasonable time interval, the grids representing stationary

obstacles will have a relatively high value and any segments in these grids will be regarded as

stationary objects. The stationary map is formed by all the grids with high enough value. In the

experiment without temporary static objects, the map tends to be stable after 80 to 100 frames.

The pseudo-code implementation of this algorithm is given below:

mapUpdate(oldMap,D)

addMap = same size to oldMap with all grids are 1
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Figure 4.2. Example of pre-processing

for each beam j with valid value in data set D

the value of corresponding grid of addMap plus 1

for the value of each grid Vm of the addMap

if Vm >= 1

Vm = 1

newMap = oldMap+ addMap

return newMap

Figure 4.3 shows the different influence of the different thresholds to the area of stationary

map. The blue line with threshold value 10 shows that background objects are “oscillating” in

and out of background classification, even after 300 frames. That is because it may take more

than 10 frames (around 0.3s) for a large vehicle driving through a 40cm × 40cm grid and this

grid will be marked as background temporarily.
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Table 4.1. Statistic information of the stationary map

Threshold 10 20 30 40 50
Mean 116.9165 111.8367 110.4451 109.2618 108.0798

Standard Deviation 4.1089 2.3833 1.9982 1.9031 2.2343

Table 4.1 presents the mean values and the standard deviation values of the area of the

stationary map after 200 frames based on different thresholds. Since the area of the stationary

map has the smallest standard deviation with threshold 40, this threshold is used in this work.

Although this algorithm cannot distinguish the temporarily stopped objects from the back-

ground, their states are still being tracked. One probable improvement of this approach is taking

into account the space occluded by other objects. If only the grids on open space minus their

values, the map may be more stable.

Figure 4.4 shows the stationary map of the data collected on Park Ave. As discussed above,

the threshold is 40, which means any grid with value greater than 40 will be counted as back-

ground. The background map demonstrates that the grid-map based background detection

algorithm is fairly good and is reliable for different kinds of objects, for instance the trees around

(230, 160) and the bushes around (120, 140).

4.2 Segmentation and classification

Once the noise is removed from the raw data, the LIDAR scan is separated into different seg-

ments and classified by the similar rule-based classification method applied by Nashashibi [36].

Considering that motorcycles are less common than pedestrians in an urban traffic scene and the

environment elements are extracted by grid map, the segments are classified either as vehicles or

pedestrians. The details are discussed in Section 4.2.3. After classifying, every segment will be

marked by feature points for the convenience of data association. Figure 4.5 presents the flow

chart of the classification process. For convenience of implementation and to have an intuitive

interpretation, the data will be translated from polar coordinate to Cartesian coordinate after

preprocessing. Unless noted, all the approaches discussed are based on a Cartesian coordinate

system.

4.2.1 Segmentation

As one of the most critical steps, data segmentation algorithm attracts many researchers’interests

(Section 2.2.2.2). In this thesis, for easiness of implementation with acceptable error, DBSCAN

is applied for data segmentation. To implement this approach in Matlab, a code written by

Daszykowski is used [32]. Figure 4.6 shows the example of DBSCAN and compares it with the

adaptive distance gap algorithm presented by [30].

Since the LIDAR calculates the distance by sending out a laser beam and computing the time

difference between sending and receiving, the black surface could absorb most of the laser and

reflect such small energy that the sensor thinks this beam does not hit any obstacles. Figure 4.7
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Figure 4.4. Grid-map of one experiment location

shows the segment results of consecutive 10 frames. Because of the inaccurate measurement,

both the positions and the shapes are not reliable.

As discussed in Chapter 3, the object detected by the sensor might be partially occluded

in the middle and the data segmentation approach may mark it as two separated segments,

when the gap caused by occlusion is too large. One example is showed in Figure 4.8, where red

dots represent the sensor measurements, blue rectangular the segment results and the frame is

marked by number. In five consecutive frames, one object is occluded by a small obstacle around

(800,250) with the LIDAR on (0,0). The data points are segmented into two objects in frame 1,

2 and 3. Then, in frame 4 and 5, they are successfully segmented as a uniform object.

4.2.2 Partially occluded object detection

The segment detected by the LIDAR sensor can be partially occluded by other objects (Fig-

ure 4.9). Since the segment boundaries of real objects are often spurious, some features provided

by them are vague and should be ignored [66]. As stated by Fayad and Nashashibi [38, 36], in

this thesis, the partial occlusion can be detected by the distance information and classified as
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Figure 4.5. Flow chart of the classification step

follows :

• Occluded one endpoint;

• Occluded both endpoints;

• Occluded middle part;

If the gap in the middle part occlusion is less than the threshold of DBSCAN, it could be

resolved by DBSCAN. Even the vehicle is divided into two parts, the system could still keep

tracking the target by feature point association discussed in Section 4.3.

In this thesis, for any segment detected by beams la to lb (a < b), the endpoint at beam la

is marked as occluded if there is an i ∈ [a− 5, a) such that Dli < Dla , where Dl is the distance

value of beam l. The endpoint at beam lb is marked as occluded if there is an i ∈ (b, b + 5]

such that Dli < Dlb , where Dl is the distance value of beam l. The constant 5 is selected by

trial to avoid the sensor noise between two objects. The pseudo-code of the occlusion detection is:
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Figure 4.6. Comparison of different segment methods, DBSCAN (up) groups the segments 11 to 14
obtained by distance threshold segmentation (down) and eliminate the noise segment 19.

occlusionDetec(S,D)

for each segment i in S

for each beam j in the 5 neighbor beams outside the endpoints of i

if the distance of j is less the distance of corresponding endpoint

D(j) = 1

return D

Because of the angular resolution limitation, in some particular situations the object detected

by LIDAR may have a significant error, like the horizontal side of vehicle A and vertical side

of vehicle D in Figure 4.9. In this thesis, when the distance between the beam of the endpoint

and its consecutive one on the same surface is larger than 50cm, this endpoint will be treated as

occluded.

4.2.3 Object classification and feature extraction

Similar to the method mentioned by Nashashibi [36], a rules-based classification is performed to

distinguish pedestrian and vehicles:
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Figure 4.8. Example of middle occluded object

• Segments with width less than 80cm are pedestrian;

• Segments with width larger than 80cm are vehicle candidates and will be fitted to line

shape or L shape;

• L-shaped segments with both sides less than 80cm and no occlusion detection are vehicle.

The pseudo-code of this step is:

classification(S)

for each segment i in S

if the diagonal of the bounding box of i is less than 80cm

mark i as Pedestrian

else
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A

B

C

D

E

F

LIDAR

Figure 4.9. Illustration of occlusion. A, C is totally visible, E has one endpoint occluded, B,D have
two endpoints occluded and F is occluded in the middle part. The vertical side of D and the horizontal
side of A is marked as occluded due to the angular resolution limitation.

mark i as potential vehicle

LlDistinguish(i)*

if the segment is a line

robustLinefit(i)*

else

cornerFit(i)*

if both sides less than 80cm and no occlusion marked

mark i as Pedestrian

return S

(* these parts are presented in the following section)

4.2.4 Line and “L-shape” classification

For each vehicle candidate, the corner point is found by searching the distance between the points

and the line formed by the two endpoints. The farthest point will be regarded as the corner point.

After that, the segment will be separated into two parts and the weighted line fitting (discussed

in Section 4.2.6) will be applied to each part. If the angle between the two lines is less than 45

degree, this segment will be marked as line. Otherwise, it will be marked as “L-shape”. When

the number of the points of either part is less than 3, the segment will be marked as line since the

information of this part is too vague to determine a feature. Figure 4.10 presents an illustration

of this step and it is implemented in following pseudo-code:

LlDistinguish(i)

for each point n in segment i

d(n) = distance between n to the line formed by two endpoints

mark the point with greatest d as potential corner point C

divided i into two sides A,B based on C

if sizeof(A) <= 3 or sizeof(B) <= 3

mark i as a line
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return

else

lineA = weightedlineFit(A)*

lineB = weightedlineFit(B)*

a = angle between lineA and lineB

if a < 45

mark i as a line

else

mark i as a L shape

(* this part is presented in following section)

α

α

Figure 4.10. Illustration of line/corner classification. Left one represents the L shape, middle one the
line shape and right one the line shape

4.2.5 Robust line fitting

Because vehicles are built differently, a fixed-height horizontal scan by a LIDAR may capture

different features depending on the vehicle. For example, a scan that captures the straight side

panels and fender lines for a normal car might capture the tires and fender wells of a large truck.

As a result, the segment may not be a straight line [27]. One solution, suggested by MacLachlan,

is to apply a robust line-fitting algorithm to resolve this problem [33]. This approach is also used

in this thesis and the details are described below:

At the beginning, the segment is fitted to a line by weighted line fitting and then 20% worst-

fitted points will be deleted. Following that step, weighted line fitting is applied again to get a

more robust result. As we can see from Figure 4.11, after deleting some bad points, the robust

line fitting algorithm can provide more reliable results without being disturbed by sensor noise.

The pseudo-code of this algorithm is:

robustlineFit(i)

line1 = weightedlineFit(i)*
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for each point n in segment i

d(n) = distance between the point n and the line1

descending sort d

set the points corresponding to the top 20% d to NAN

line2 = weightedlineFit(i)

return line2

(* this part is presented later)
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Figure 4.11. Example of Robust Line Fitting

4.2.6 Weighted line fitting

Assume a set of points could be fitted into a line as Equation 4.1:

y = kx+ b (4.1)

After rewriting it into a matrix form and substitute x, y with n points in the data set, a more

general equation could be obtained:

Y = Xβ (4.2)

where

Y =


y1

y2
...

yn

 , X =


x1 1

x2 1
...

...

xn 1

 , β =

[
k

b

]
(4.3)

Applying weighted least squares estimation, the parameters of the line could be estimated by

β = (XTWX)−1XTWY (4.4)
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where W is a diagonal matrix with the weighted factor of every point. Considering near points

are denser than far ones, the weight factor is the square of the Euclidean distance between the

point to the LIDAR:

Wi = x2i + y2i (4.5)

where Wi is the weighted factor of point i at position (xi, yi). This algorithm is implemented in

the following pseudo-code:

weightlineFit(i)

for each point n in segment i

w(n) = x(n) ∗ x(n) + y(n) ∗ y(n)

w = w/max(w)

calculate slope k and intercept b based on Equation 4.4

return k, b

4.2.7 Corner fitting

Since the geometric model of vehicles can be regarded as rectangular, any L shape should be

a corner with right angle. For robust feature extraction, as suggested by RA.Maclachlan [66],

a corner fitting is applied here. The first step in corner fitting is the same as that of line and

“L-shape” classification: dividing the cluster into two sides based on the roughly corner point.

Then the longer one will be used as the base side since it is more robust than the shorter one. The

base side will be fitted into a line first. Next, the perpendicular line is obtained by least-squares

linear regression by enforcing a slope requirement on the fit. The corner point will be refined by

the intersection point of lines fitting the two sides. Both sides are fitted by weighted line fitting.

This algorithm is implemented in the following pseudo-code:

cornerFit(i)

for each point n in segment i

d(n) = distance between n to the line formed by two endpoints

mark the point with greatest d as potential corner point C

divided i into two sides: A and B based on C

if the length of the diagonal of A′s bounding box > the length of the diagonal of B′s bounding

box

[k1, b1] = robustlineFit(A)

k2 = −1/k1

x = x values of all the points in B

y = y values of all the points in B

b2 = (sum(y)− k2 ∗ sum(x))/sizeof(x)

else
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[k1, b1] = robustlineFit(B)

k2 = −1/k1

x = x values of all the points in A

y = y values of all the points in A

b2 = (sum(y)− k2 ∗ sum(x))/sizeof(x)

CP = point of intersection between [k1, b1] and [k2, b2]

As the example in Figure 4.12, the corner point calculated by the algorithm is more accurate

than picking any other specific point from the data since the actual corner of real vehicles tends

to be rounded.
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Figure 4.12. Example of corner fitting

4.2.8 Feature points calculation

The feature points are used to represent a vehicle depend on the shape and occlusion situation

of the segment of points representing the vehicle. For a vehicle-classified object, the object may

be in the shape of a line, an “L”, or be uncertain. For a line segment, the two endpoints can

serve as feature points. For this line representation, any occluded endpoints are deleted. For

an “L-shaped” object, the corner point will also be included as a feature. If no feature point

is detected, the mean point of the whole segment will be counted as the feature point. For

pedestrian-classified objects, the feature point is represented by the mean point of the segment.

Figure 4.13 illustrates some examples of the feature points calculation.

4.3 Data association

The data association algorithm used in this thesis is called the Greedy Nearest Neighbor (GNN)

algorithm. The experiment results from others (as well as this thesis) show that it is good enough

with acceptable errors.



40

A

B

C

D

E

F

LIDAR

P

Figure 4.13. Examples of feature points calculation. The black crossings represent the feature points.

To explain the GNN algorithm, we first consider the physical characteristics of a moving ve-

hicle. Specifically, the Mahalanobis distance is used to measure the distance instead of Euclidean

distance because it takes into account the distribution of the data (the details will be discussed

in following section). When matching the object to its nearest cluster, the feature points are

used to reduce the computational complexity and decrease the influence of the noise and bias.

According to the matching result, every object obtains a new speed. If the new speed is under a

threshold determined by the type of the object, the match is considered successful and the object

gets a new position. Otherwise, it is stored for a short period. Such stored objects are marked as

missing and deleted if no prior or subsequent matches are found for several frames. The detailed

logical structure is showed in Figure 4.14 and the pseudo-code of this part is showed as following:

dataAssociation(objectList, S)

T = time interval between two consecutive frames

for each object o in objectList

if S is empty

mark o as “missing”

missT ime+ 1

if missT ime > thresholdDelet

delet o from objectList

for each segment i in S

D(i) = Mahalanobis distance between o and i

match o and segment p with minimum D based on corresponding feature point

speed = (distance between corresponding feature points)/T

if speed > threshold

mark o as “missing”

missT ime+ 1

if missT ime > thresholdDelet

delet o from objectList
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elseif the state of the o is “normal”

update the object by Kalman Filter

delet p from S

elseif the state of the o is “adding”

addT ime+ 1

delet p from S

if addT ime > thresholdAdd

set the state of o to “normal”

elseif the state of o is “missing”

set the state of o to “normal”

delet p from S

if S is non-empty

add all the left segments in objectList

return objectList

4.3.1 GNN data association

Every existing object in the last frame is compared to all the new classified clusters to find the

nearest match. The algorithm gives priority to the oldest objects first, which helps to eliminate

the accidental miss matching caused by noise or wrong classification of dark objects (Figure 4.15).

Shown in Figure 4.15 are two consecutive frames of the same object (red circles). The black

crossings are the four corner feature points of the vehicle. Since the error or accuracy of the

sensor, there is gap between two edges of the right angle. In the first frame (shown at left),

the gap is notable such that the DBSCAN regarded them as different clusters and association

step marks the horizontal edge as an “adding” object (blue circles). In the new frame (shown at

right), the object is tracked successfully again because the older objects have priority to match

to the segments. The artificial “added” object is deleted since it does not last for enough time

4.3.2 Feature point association

To form a feature point association, the new position and speed of the object are calculated by

determining the feature correspondence between measured data and previously associated object.

In this study, there are two kinds of feature points considered: feature points representing the

mean position of the segment, and corner figure points.

As discussed in section 4.2.8, the feature points of the segment are computed during the clas-

sification step. The object will keep the feature points of prior data after successful matching,

and the object will add new feature points when the segment is associated with more information

from new data. Eventually, every object should have four corner feature points unless the seg-

ments it matched cannot provide enough information. One example of where there is insufficient
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Figure 4.14. Flow char of data association step.

information would be when the vehicle is scanned from the frontal direction such that the back

of the vehicle is never visible.

Figure 4.16 is an example of data association of 20 consecutive frames. The black dots are

background extracted by grid map approach, the red dots the segments obtained by sensor and

the black crossing the feature points of the vehicle object. The number is calculated automatically

by the tracking system, which represents the order of the object (including the noise object with
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Figure 4.15. Example of GNN data association

short survival time and the obstacle on background). The true number of the moving objects

can be computed by counting the normal marked objects on foreground.
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Figure 4.16. Example of data association

Figure 4.17 is another example of data association. Black star represents the feature point of

the pedestrian object. It indicates the algorithm can deal with the vehicle object and pedestrian

object at the same time.

The feature statistics such as the mean and corner positions will obviously change as the

object moves through the scanning field, and sometimes these changes are quite abrupt. To

make the model of the vehicle stable, the length of the edge is computed by averaging all the

corresponding history valid edge values. In other words, the feature “remembers” the extent

of previous vehicle scans and uses this information to improve the expected mean and corner

positions of the vehicle. Figure 4.18 shows the lengths of two sides of the vehicle 15 in previous

Figure 4.17 versus the time.
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Figure 4.18. Lengths of the sides

4.4 Model motion

Similar to Lim used in visual tracking system [83], a general time series dynamic model is applied

in this work to predict the state of targets during occlusion.

4.4.1 Dynamic modeling for motion model

In this thesis, the motions considered include at least constant velocity, constant acceleration,

and geometric turning. To avoid over-fitting of these trajectories, both second-order and third-

order difference equation models were applied. A constant parameter is involved by setting the

input to 1 for obtaining a relatively accurate initial value.

To obtain a dynamic model representation, an l-th order time series dynamic model can be
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written as Equation 4.6,

yk =

l∑
n=1

anyk−n + bu (4.6)

where yk is the position of the first feature of object in k-th frame, u is the input and always set

to 1. The model with constant velocity v is a particular case; i.e.:

yk = yk−1 + v, k = 2, 3, ... (4.7)

The model with constant acceleration a is also a particular case, i.e.:

yk = 2yk−1 − yk−2 + a, k = 3, 4, ... (4.8)

Since the x position and y position are modeled separately, the turning motion could be

modeled by differentiating the velocities in the x and y directions.

4.4.2 Implementation

Similar to an optimization problem, the dynamic model coefficients can be learned in a manner

that best fits the observed data. The goal of this process is to minimize the objective function

below, which is the sum of the least-square errors. This thesis uses System Identification toolbox

in Matlab to build the dynamic model.

∑
k

(yk −
i∑

n=1

anyk−n + b)2 (4.9)

After the dynamic model is built, the states of the objects will be estimated by Kalman Filter

using following state space models:

Third order:  xk

xk−1

xk−2

 =

 a1 a2 a3

1 0 0

0 1 0


 xk−1

xk−2

xk−3

 (4.10)

Z =
[

1 0 0
] xk

xk−1

xk−2

 (4.11)

Second order [
xk

xk−1

]
=

[
a1 a2

1 0

][
xk−1

xk−2

]
(4.12)

Z =
[

1 0
] [ xk

xk−1

]
(4.13)

Once the object gets 20 valid observations, the model is updated by system identification
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using observed data. Because motion dynamics of the object cannot be described by only one

model, the system will update the motion model every 20 frames. To reduce the error of the

model estimates during the temporary occlusion, the model is updated based on 50 history obser-

vations before predicting any future trajectories. This work applies the “arx” function in Matlab

to perform the system identification and the psudo-code of the kalman filtering step is:

updateKF(z,KF )

xp = KF.A ∗KF.X ′ +KF.Bu

pp = KF.A ∗KF.P ∗KF.A′ +KF.Q

k = pp ∗KF.H ′ ∗ (KF.H ∗ pp ∗KF.H ′ +KF.R)−1

newKF.X = (xp+ k ∗ (z′ −KF.H ∗ xp))′

newKF.P = (I3− k ∗KF.H) ∗ pp
where I3 is a 3X3 identity matrix.

4.4.3 Experimental results

To test the dynamic model and select its order, many experiments are performed based on

simulated data. In these simulated data, all the objects involved are represented by 40× 40cm2

squares. Because the object’s width is less than 60cm, it will be marked as pedestrian class

and the mean feature points are used to build the model. For the vehicle class object, only one

of the corner feature points will be used to build the model. Therefore, the results based on

square-shape objects can evaluate the dynamic modeling of both pedestrian and vehicle objects.

4.4.3.1 Tracking of different dynamic motions

Figure 4.19 to Figure 4.25 show the results of data filtering from simple scenarios to hard sce-

narios. Seven scenarios are created:

1. Constant velocity motion

2. Constant acceleration motion

3. Turning motion

4. Forward-backward motion

5. Moving-stationary-moving motion

6. Lane change motion

7. Lane change (hard) motion

Every scenario is tested by both 3rd order model (blue line) and 2nd order model (green

line). The red line represents the true motion. For every scenario, the trajectory (left) and the

estimated velocity (right) are shown.
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Figure 4.19. The constant velocity motion
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Figure 4.20. The constant acceleration motion

The tracking trajectories of all the scenarios can follow the true ones fairly well. The reason

of the slight bias between the true trajectory and the tracking trajectory is because the true

trajectory is produced by the path of the square’s center of mass and the tracking trajectory is

formed by the path of the feature points.

For relatively simple scenarios 1, 2, 3, 4 and 5, the velocity approximated by the 2nd order

model has better performance. However, for relatively complex scenarios 6 and 7, the speed plots

show that the 3rd order model is more robust than the 2nd order model.

4.4.3.2 Prediction during occlusion

Several occlusion scenarios are created to evaluate the prediction performance of the identified

dynamic model during occlusion. Same to the experiments above, 3rd order model (blue line)

and 2nd order model (green line) are tested and compared. The black dots represent the obstacle
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Figure 4.21. The turning motion
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Figure 4.22. The forward-backward motion

and the star points are the positions predicted by the identified model.

According to the simulated experiment results, when the model is identified by enough train-

ing data and the occlusion time is relatively short, both 3rd order model and 2nd order model

work well. However, when the training data set is small (Figure 4.29, Figure 4.30) or the object

is occluded by a relatively long period of time (Figure 4.31, Figure 4.32), the 2nd order model

will lose the track. Therefore, for the better performance, the 3rd order model is applied in this

thesis.
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Figure 4.23. The moving-stationary-moving motion
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Figure 4.24. The lane change motion
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Figure 4.25. The lane change (hard) motion
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Figure 4.26. Three objects pass by each other. The arrows represent the directions of the movements.
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Figure 4.27. Five objects pass by each other. The arrows represent the directions of the movements.
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Figure 4.28. Object is occluded by an obstacle. The object moves from the right to the left. The width
of the obstacle is 4m and size of the training data set is 49.
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Figure 4.29. Object is occluded by an obstacle (less training data). The object moves from the right
to the left. The width of the obstacle is 4m and size of the training data set is 34.
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Figure 4.31. Object is occluded by an obstacle (long occluded time). The object moves from the right
to the left. The width of the obstacle is 5m and size of the training data set is 49.
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Figure 4.33. Two pedestrians go crossing after an obstacle. Both of them move from the bottom to
the top.



Chapter 5
Experimental Results

The experimental data was collected with SICK LIDAR in two different locations in Penn State

- University Park (see Chapter 3). This chapter presents both successes and failures in this

process. The reasons of the failures are explained.

5.1 Experimental results

Since the previous chapter explained and showed specific examples of the many steps and algo-

rithms, only the primary results of significant parts are shown in this section. Two main steps,

background detection, data association and the performance of the whole tracking system are

presented below.

Figure 5.1 is a typical snapshot during tracking, where the “*” represents the feature point of

pedestrian class object, the “+” the feature point of vehicle object, blue point the LIDAR, red

circles the tracked moving objects and yellow circles the missing objects. All the uncolored feature

points represent stationary objects, including background obstacles and temporary stationary

objects. It demonstrates that the system could track multiple objects simultaneously, including

three visible vehicles and one occluded vehicle. Although marked as stationary, the system keeps

updating the states of these uncolored objects in case that the object is temporarily stationary.

5.1.1 Result one

Figure 5.2 shows a time sequence of tracking results on Park Ave. location, where the black dots

represent the background, black “+” the feature points of vehicle objects in current frame, black

“*” feature points of pedestrian objects in current frame, red lines the trajectories of the vehicle

objects and blue line the trajectory of the pedestrian object.

During more than 300 frames showed in Figure 5.2, the system successfully tracks four vehicle

objects and one pedestrian object. In Figure 5.2(d), the vehicle object in the upper lane is

occluded by the vehicle object closer to the sensor and reacquired in Figure 5.2(e) based on the
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Figure 5.1. Snapshot of the tracking processing

positions predicted by dynamic model during occlusion. The pedestrian object in Figure 5.2(e)

also survives from being occluded by the vehicle object near the sensor.

5.1.2 Result two

The data collected near an intersection is used to test the robustness of the system. Considering

the vehicle is always occluded by very close pedestrians in the intersection, the sensor is places

behind three small obstacles. Therefore, tracking multiple targets in this environment is much

more difficult than the experiment on Park Ave. In addition, the stop sign and the crossing also

make the dynamics of the object more complex. A time sequence of tracking results are showed

in Figure 5.3, where the black dots represent the background, black “+” the feature points of

vehicle objects in current frame, black “*” feature points of pedestrian objects in current frame,

red lines the trajectories of the vehicle objects and blue line the trajectory of the pedestrian

object.

Figure 5.3 presents several tracking results during 1000 consecutive frames. The system

successfully tracks three vehicle objects and one pedestrian object. Besides them, the tracks of

one vehicle object and one pedestrian object are lost during occlusion, which will be discussed

later. This figure indicates the ability of tracking complex motion of the identified dynamic

model. One moving-stationary-turning motion object and one moving-stationary-moving object

are tracked under the influence of closet obstacles. Although the system loses the track of the

pedestrian in Figure 5.3(b), Figure 5.3(c) and Figure 5.3(d), the pedestrian in Figure 5.3(d),

Figure 5.3(e) and Figure 5.3(f) survives from being greatly occluded by a closed vehicle object.

5.2 Failure analysis

As showed in Chapter 4, when the moving object is occluded for a long period of time or the

training data set is relatively small, the predictions propagated by the identified model may be
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not accurate enough to be reacquired by the system. In this section, two examples of the failed

tracking are presented.

5.2.1 Failed pedestrian tracking result

Figure 5.4 and Figure 5.5 present a result of a failed pedestrian tracking. In Figure 5.4, the lines

represent the observed trajectories, the stars the predicted trajectories, blue color the former part

and the green color the latter part. Figure 5.5 shows the speeds of the former part (blue) and

latter part (red). This pedestrian object is occluded for nearly 100 frames. Figure 5.4 indicates

that the motion is failed modeling as a deceleration motion instead of a nearly constant velocity

one. It may be caused by the motion of the pedestrian which is relatively unstable such that

recent 50 observations do represent a deceleration motion. For this particular case, using more

training data may resolve the problem. However, more training data can make the system fragile

to the real motion change.

5.2.2 Failed vehicle tracking result

Figure 5.6 and Figure 5.7 show the failed vehicle object tracking results. Same as the results

above, in Figure 5.6, the lines represent the observed trajectories, the stars the predicted trajec-

tories, blue color the former part and the green color the latter part. Figure 5.7 shows the speeds

of the former part (blue) and latter part (red). Although Figure 5.7 indicates the estimated

speed is very close to the reacquired speed, from Figure 5.6, we can see the predicted trajectory

tends to be parallel to the reacquired trajectory, which is hard to be associated because of the

Mahalanobis metric.
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Figure 5.2. Example of multi-object tracking result
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Figure 5.3. Example of multi-object tracking result
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Chapter 6
Conclusion

In the past decades, detection and tracking multiple objects has been studied extensively and

a large number of applications have been involved. Because LIDAR provides accurate distance

information, many researchers introduced it in multi-object tracking systems in recent ten years

and many techniques have been implemented in them. In multi-object tracking systems, motion

model is one of the crucial factors because it will affect the performance of the data filtering and

the prediction when valid observations are missing.

In this thesis, we have shown that besides applying one specific model or combining several

possible model candidates, the dynamic model identified by recent history observations can ad-

dress this problem fairly well. As evaluated offline by simulated data and the real data collected

in urban scenes, the dynamic model based multi-object tracking system could track and predict

objects with simple motion dynamic very accurately, e.g. constant velocity, and predict the

states of the objects with complex motion dynamics with acceptable error. As illustrated by the

results, third order dynamic model is good enough for most situations and the performance is

much better than the specific constant velocity model.

Future work includes incorporating other advanced data association algorithm, e.g. JPDA

or MHT to deal with very crowded scenes, introducing geometric model to resolve the partial

occluded problem and applying a technique to update the dynamic model based on the error of

the old model.
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