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Abstract of the Dissertation

The Empirical Moment Matrix and Its Application in Computer Vision

by

Mengran Gou

Doctor of Philosophy in Electrical Engineering

Northeastern University, April 2018

Dr. Octavia I. Camps, Advisor

Embedding local properties of an image, for instance its color intensities or the magnitude
and orientation of its gradients, to create a representative feature is a critical component in many
computer vision tasks, such as detection, classification, segmentation and tracking. A feature that is
representative yet invariant to nuisance factors will scaffold the following modules in the processing
pipeline and lead to a better performance for the task at hand. Statistical moments have often been
utilized to build such descriptors since they provide a quantitative measure for the shape of the
underlying distribution of the data. Examples of these include the covariance matrix feature, bilinear
pooling encoding and Gaussian descriptors. However, until now, these features have been limited
to using up to second order moments, i.e. the mean and variance of the data, and hence can be
poor descriptors when the underlying distribution is non-Gaussian. This dissertation aims towards
examining this problem in-depth and identifying possible solutions. In particular, we propose to use
feature descriptors based on the empirical moment matrix, which gathers high order moments and
embeds them into the manifold of symmetric positive definite (SPD) matrices. The effectiveness
of the proposed approach is illustrated in the context of two computer vision problems: person
re-Identification (re-ID) and fine-grain classification.

Person re-ID is the problem of matching images of a pedestrian across cameras with no
overlapping fields of view. It is one of the key tasks in surveillance video processing. Yet, due to the
extremely large inter-class variances across different cameras (e.g., poses, illumination, viewpoints),
the performance of the state-of-the-art person re-id algorithms is still far from ideal. In this thesis,
we propose a novel descriptor, based on the on-manifold mean of a moment matrix (moM) and
horizontal mean pooling, which can be used to approximate complex, non-Gaussian, distributions of
the pixel features within a mid-sized local patch. To mitigate the gap between academic research
and real-world applications, two large-scale public re-ID datasets are proposed and a systematic
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benchmark evaluation is established on both new datasets. Extensive experiments on five widely used
public re-ID datasets and two newly collected datasets demonstrate that incorporating the proposed
moM feature improves re-ID performance.

Different from general objection recognition tasks, fine-grained classification usually tries
to distinguish objects at the sub-category level, such as different makes of cars or different species
of a bird. The main challenge of this task is the relatively large inter-class and relatively small
intra-class variations. The most successful approaches to this problem use deep convolutional neural
network(CNN), where the top convolutional layers perform a local representation extraction step and
the bottom fully connected layers perform an encoding step. In the case of fine-grain classification,
bilinear pooling and Gaussian embedding have been shown as the best encoding options but at
the price of an enormous feature dimensionality. Approximate compact pooling methods have
been explored towards addressing this weakness. Additionally, recent results have shown that
significant performance gains can be achieved by using matrix normalization to regularize the
unstable higher order information. However, combining compact pooling with matrix normalization
has not been explored until now. In this thesis, we unify the bilinear pooling layer and the global
Gaussian embedding layer through the empirical moment matrix in a novel deep architecture, moment
embedding network MoNet. In addition, we propose a novel sub-matrix square-root layer, which
can be used to normalize the output of the convolution layer directly and mitigate the dimensionality
problem with off-the-shelf compact pooling methods. Our experiments on three widely used fine-
grained classification datasets illustrate that our proposed architecture MoNet can achieve similar or
better performance than the state-of-art architectures . Furthermore, when combined with compact
pooling techniques, it obtains comparable performance with encoded features but with only 4% of
the dimensions.
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Chapter 1

Introduction

In most computer vision tasks, embedding local representations of an image to form a

feature that is representative yet invariant to nuisance factors is a crucial step. Essentially, this

procedure amounts to estimating the underlying distribution of the data and summarizing it into

some compact representation. In statistics, a moment is a quantitative measure of the appearance

of a distribution. For example, the first order moment represents the mean value and the second

order moment represents the variance. Thus, a collection of different order moments can be utilized

to approximate the distribution of the data, where using the higher order of the moments leads to

the more accurate representation. However, the current statistical features have been limited to

using up to second order moments, i.e., the mean and the variance, which is insufficient when the

underlying distribution is non-Gaussian. This research aims towards examining this problem in-depth

and identifying possible solutions.

In this dissertation, the use of the empirical moment matrix, a unique formulation of the

collection of moments, is proposed as the way to capture local statistics. The main advantage of

using the moment matrix is that, in addition to gathering 0 to high order moments, it provides a

natural embedding of the data into the manifold of (SPD) matrices, which does not depend on the

number of samples. The benefits of using such embedding will be illustrated in the context of two

challenging computer vision problems: person (re-ID) and fine-grained classification.

1.1 Challenges

Person re-ID is the problem of matching images of a pedestrian across cameras with no

overlapping fields of view. It is one of the critical tasks in surveillance video processing. Yet,

1



CHAPTER 1. INTRODUCTION

due to the extremely large inter-class variances across different cameras (e.g., poses, illumination,

viewpoints), the performance of the state-of-the-art person re-id algorithms is still far from ideal.

Different from general objection recognition tasks, fine-grained classification usually tries

to distinguish objects at the sub-category level, such as different makes of cars or different species of

birds. The main challenge of this task is the relatively large inter-class and relatively small intra-class

variations.

The use of statistical moments has been investigated to address many computer vision

problems. For example, the covariance matrix has been proposed as a feature to describe an image

or region [3, 4]. By taking advantage of both mean and covariance information, several a Gaussian

descriptors have been proposed [5, 6, 7]. These approaches differ in how they inject the mean and

covariance information. The Gaussian descriptors have a critical problem of assuming the underlying

distribution is Gaussian, which is often not true. In order to approximate arbitrary distributions,

Gaussian Mixture Model (GMM) [8] and its derivative extension, the Fisher Vector [9], have been

proposed. However, the number of Gaussians in the mixture is a key hyper parameter and the

estimation is usually a heuristic procedure.

In contrast, by computing the tensor product of a vector of ordered monomials, the proposed

approaches using empirical moment matrix can approximate arbitrary distributions by including

higher order moments.

1.2 Contributions

The main contributions of this dissertation are:

• A local feature encoding paradigm based on the empirical moment matrix that unifies and

generalizes bilinear pooling and Gaussian descriptors with the ability to incorporate higher

order moment information. Synthetic experiments illustrate the benefits of introducing higher

order moments to model non-Gaussian distributions.

• A hierarchical hand-crafted feature (moM) for the person re-ID problem to better model

non-Gaussian data. Empirical moment matrices are used to model the non-Gaussian local

patches while the mean on the manifold of SPD matrices for the moment matrices of patches

at the same height provides viewpoint invariance. Experiments on five widely used public

datasets show the effectiveness of moM, which achieves comparable or better performances

than state-of-the-art in all five datasets when combining with GOG [10].

2
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• Two new real-world large-scale person re-ID datasets. One was captured with a surveillance

camera network inside the sterile zone of an US Airport. The other was captured with an exist-

ing surveillance camera network at Duke University. A systematic benchmark evaluation with

10 features and 12 metric learning methods verifies that the proposed moM is complementary

to GOG [10] and that the combination of both features achieves the best result.

• A mathematical formulation that uses the empirical moment matrix to disentangle the bilinear

pooling layer from the global Gaussian embedding layer in CNN. Based on this result, together

with a novel sub-matrix square-root layer, we proposed a new architecture, MoNet, which can

take the advantages from both the Gaussian embedding and the matrix normalization.

• Experiments for the fine-grained classification problem show that the proposed MoNet archi-

tecture achieves similar or better results than G2DeNet[11] and the Tensor Sketch version can

achieve comparable performance with only 4% of its dimensionality.

The dissertation is organized as follows. After the introduction, Chapter 2 reviews existing

work on feature encoding for both conventional and modern CNN pipelines. Then Chapter 3

introduces the proposed moM feature, which is followed by a chapter to discuss the experimental

results on person re-ID. Chapter 6 describes the MoNet in detail, including the derivation of

backward propagation. Experiments on fine-grained classification are discussed in Chapter 7 and the

dissertation concludes with a discussion of the contributions, limitations and possible directions for

future research.

3



Chapter 2

Image representations in computer

vision

Aligning with the human visual system, computer vision cares about analysis and under-

standing the information from images or videos [12]. To achieve this, one essential and critical step

is describing the image with a feature that is representative yet invariant to nuisance noise. In the

past decades, a significant amount of work has been proposed on this topic [13, 14]. Most of existing

image representation pipelines have two critical steps: feature extraction and encoding (Fig. 2.1).

Given an image, a feature exaction step will extract local features to describe a small region, and

the follow-up encoding step will aggregate those local features into one final representation vector.

Recently, CNNs has been widely applied in different computer vision tasks and achieved a terrific

success in most of them. Although CNNs are trained from end to end, the convolutional layers can be

viewed as local feature extractors and the following fully connection (FC) layers as feature encoding

steps.

This chapter will give a brief review of existing image representation techniques, in both

conventional computer vision pipelines and modern deep learning pipelines.

2.1 Conventional pipeline

2.1.1 Feature Extraction

Given an image, it will provide color/gray intensity features naturally. With this informa-

tion, one can split the hue, saturation and lightness with different color spaces for the color image. By

4
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Hand-craft 
feature

…

CNN
W⨉H⨉C

…

…
CNN

Feature extraction Encoding

SIFT

ColorGradient

Bag of  
Words

Statistical  
Modeling

Pooling

Figure 2.1: Typical image representation pipeline in a computer vision system. The upper rows
shows a conventional pipeline whereas the lower row shows a modern deep CNN pipeline.

applying Gaussian derivatives in different orientations, one can obtain the edge or texture information

for each pixel as well. Later, instead of using the local features for all pixels, key-points based local

regions have been shown to be more robust to spatial variations. Harris corners [15] have been widely

used to obtain rotation invariant features. To make the local feature more representative, several

carefully designed craft local descriptors have been proposed. Scale-invariant feature transform

(SIFT) [16] characterizes the local region with the histogram of gradient in sub-regions. For each

local region, it uses the difference of Gaussians (DoG) to find the maximum scale and assigns the

direction with the maximum magnitude of gradient as the orientation. With proper normalization,

it achieves an exceptional performance on scale and orientation invariant representations. Speed

up robust feature (SURF) [17] approximates the DoG with a box convolution filter and utilizes the

response of wavelets to represent the local region. It can achieve comparable performance to SIFT

but in a much faster way. In 2011, Rublee et al. proposed Oriented FAST and Rotated BRIEF (ORB)

[18] as an efficient alternative for SIFT or SURF. By taking advantage of a much faster key-point

detector FAST [19] and an efficient orientation normalization, it has been widely applied in many

real-time applications.
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2.1.2 Encoding

Most encoding methods in the literature can be classified into two main types. On one

hand, adopted from document classification, Bag of Words (BoW) [20] clusters the local descriptors

into a vocabulary set and model the whole image by counting the occurrences of local visual features.

Instead of only counting the occurrences, VLAD [21] also keeps the difference between the local

feature and the visual words. Fisher vector [9] adopts the GMM as the visual vocabulary and utilizes

the derivative on the means and variances as the feature. On the other hand, statistical moments have

also been used as a representation for a region of interest because they can estimate the shape of the

underline distribution. Covariance matrix has shown remarkable results in texture classification [3],

tracking [22] and person detection [23]. Bilinear pooling [24] uses the outer product of the feature

vector to compute the second order statistical information to model two-factor structure image. Later,

several formulations of Gaussian descriptors have been proposed to improve the performance by

adding the mean information. [5] form the multivariate Gaussian with a positive definite lower

triangular affine transformation matrix. [10] embeds it with a semi-positive definition (SPD) matrix

and applied on re-ID.

2.2 Modern CNN pipeline

In 2012, Krizhevsky et al. [25] demonstrated the power of deep convolutional neural

networks for computer vision tasks. With the help of modern GPU, and large-scale datasets, AlexNet

pushed the best performance on an image classification challenge by a significant margin. After

that, many works utilize pre-trained deep CNNs as local representation extractors or the final

feature extractors to describe the image for different tasks. Figure 2.2 illustrates a typical modern

CNN architecture, which includes a few convolutional layers, followed by several fully connected

layers. One can easily align it with the conventional feature extraction pipeline by considering

the convolutional layers as the local representation extractor and the fully connection layers as the

encoding method. Similar to the conventional pipeline research path, intensive research has been

done on both, convolutional layers as well as the layers right after that. After AlexNet, Simonyan

et al. [2] substituted the large convolution filter with consecutive smaller ones and increased the

number of layers. The proposed VGGNet improved the performance. He et al. [26] mitigated the

gradient vanishing problem with a jump connection between non-connected convolution layers and

increased the number of layers dramatically. The proposed network is named ResNet. Besides fully

6
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…

CNN
W⨉H⨉C

Fully connection 
layers D

classifier

k

Figure 2.2: A typical modern deep CNN architecture

connection layer, global average pooling [26] has been used to extract the final feature for the image.

Inspired by [27], Lin et al. [28] proposed to substitute the FC layers with a bilinear pooling layer,

which has been proven to be effective in fine-grained classification [28], texture analysis [29] and

segmentation [30]. A critical drawback for bilinear pooling is the large dimensionality due to the

outer product. To mitigate this problem, Gao et al. [31] applied random Maclaurin [32] and tensor

sketch [33] techniques to approximate the bilinear pooling layer with much less dimensionality. In

[34], the low-rank property was investigated to reduce the number of parameters for the network.

Wang et al. [11] extended bilinear pooling with global Gaussian embedding layer. Also, a proper

matrix square-root normalization technique was also discussed. Around the same time, the author of

BCNN discovered the similar matrix power normalization scheme and named it as improved BCNN

[35].
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Chapter 3

moM: mean of Moments Feature

In the past decade, different types of descriptors have been proposed and tested on the re-id

problem. Two recently proposed techniques led to a significant improvement in the quality of these

descriptors [36, 10].

The first technique replaces the simple computation of histograms with more advanced

feature-encoding methods. Along this line, covariance matrices are used to encapsulate the second

order moment information in a local patch [37, 38]. By recognizing the importance of also including

the first order moment in the feature representation, [39, 10] achieved the state-of-the-art performance

using a SPD embedded Gaussian descriptor. However, a limitation of this descriptor is the implicit

assumption that the underlying distribution is a Gaussian. When this assumption does not hold,

(see Figure 3.1), up to second order moment information is not sufficient to completely represent

relatively complex local regions. Though Fisher Vector encoding feature can mimic a non-Gaussian

distribution with GMM and achieve decent results on re-id [40, 41], it assumes that the variables at

the pixel-level feature are independent from each other. Moreover, the GMM needs a training set to

learn its parameters. In contrast, here we propose to take into account higher (greater than two) order

moment information by using the empirical moment matrix to approximate arbitrary non-Gaussian

distributions in the local region without requiring learning parameters.

The second technique applies a strip level pooling step to further improve cross-view

invariance. As identities are roughly aligned in the vertical direction (Figure 3.1), different viewpoints

would mainly affect the appearance distribution in the horizontal direction. Based on this assumption,

Liao et. al [42] apply maximum pooling along the same height and Matsukawa et. al [10] uses

another Gaussian model to approximate the distribution of the dense patches descriptors. In this

dissertation, we also use horizontal mean pooling to improve the feature viewpoint invariance.

8



CHAPTER 3. MOM: MEAN OF MOMENTS FEATURE

Figure 3.1: Sample images where up to second order moments are not enough to distinguish targets.
Each column shows one pair of samples from VIPeR, CUHK01, PRID450s and GRID, respectively.
The color bars represent the Euclidean distance between the corresponding strips within the image
pair, where the left one comes from moM and the right one from GOG. The images on the first
row are from the “probe” view and the second row are from the “gallery” view. In these examples,
with the help of higher order moments, moM has better invariance property when the person has a
fine-detailed non-Gaussian appearance, e.g., the dot-pattern in column 1, white strip on the backpack
in column 2, black strip on a white shirt in column 3 and the stripe-pattern in column 4.
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Furthermore, since moment matrices are on a SPD manifold, we also propose to use the on-manifold

mean and flattening on its tangent space.

Experiments on five public benchmark datasets illustrate the benefits of encapsulating

higher order moments information. The combination of proposed moM with GOG [10] achieves

comparable or better state-of-the-art performance on all the tested datasets.
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Figure 3.2: Level sets of (3.4) with different Ds and T s. (a) D = 1; (b) D = 2; (c) D = 3; (d)
D = 4
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3.1 Empirical moment matrix

Given a dataset consisting of N samples X = {xk}Nk=1, where xk = [xk1, xk2, ...xkm] ∈
Rm. The collection of all monomials of xk ∈ Rm up to order D is defined as

vk ∈ Rsm,D , with vk(i) = xdi1k1 x
di2
k2 · · ·x

dim
km ,∀

sm,D

i=1 (3.1)

where the tuple di
.
= (di1, di2, . . . , dim) ∈ Nm denotes the exponents of xk1, xk2, . . . , xkm in the

term vk(i), satisfying 0 ≤ ‖di‖1 ≤ D. The D-th1 order empirical moment matrix is defined as

M
.
=E{vvT } ∈ Rsm,D×sm,D , with

M(i, j)
.
=E{v(i)v(j)}

=
1

N

N∑
k=1

vk(i)vk(j), ∀i, j = 1, . . . , sm,D

(3.2)

Pauwels and Lasserre [43] show that the level set of polynomial vT ×M−1 × v can be

used to represent a shape of arbitrary distribution with large enough D. When D = 1, the moment

matrix can be written as:  1 E(x)

E(x)T E{xxT }

 (3.3)

which is the same as the transformation from Gaussian distribution to SPD manifold, except for the

normalization term [44]. Figure 3.2 demonstrates the merit of higher order moment matrix. After

computing M, we plot the level set described as (3.4) with different T by red lines in Figure 3.2:

vT ×M−1 × v = T (3.4)

As observed in the plot, moment matrices with higher D can preserve the shape of points

more accurately.

Comparing to statistical properties such as mean and covariance, which are popular in the

literature, moment matrix of higher order (D ≥ 2) contains richer statistical information. Therefore,

in the sequel, within a region of interest p, we will use the moment matrix Mp defined as (3.2) to

model the local appearance feature distribution.
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Figure 3.3: moM feature extraction: Starting with a pedestrian image, (a) pixel features are computed
to extract the color and gradient information and (b) each patch is modeled with a moment matrix,
which lies on a SPD manifold. (c) On-manifold mean is applied to pool the information along
horizontal strips and then the mean matrix is flattened to its tangent space and vectorized to form the
final descriptor of the strip.

3.2 The algorithm

Figure 3.3 shows the pipeline for extracting moM and the step-by-step procedure is shown

in Alg. 1.

3.2.1 Pixel features

Following the work [10], we also use the following pixel level features to represent local

appearance information:

xk = [y,A0, A90 , A180 , A270 , Ca, Cb, Cc]
T (3.5)

where y is the y coordinate of pixel zk, Aθ∈{0,90,180,270} are the magnitudes of gradient along four

directions, and C{a,b,c} are intensity values in the corresponding color channel. All dimensions are

normalized to the range [0, 1]. In this paper, we will use RGB, HSV, LAB or normalized RG as the

color channel.

3.2.2 On-manifold mean

As shown in Figure 3.1, pedestrians inside the bounding boxes are roughly aligned in

the vertical direction. The current state-of-the-art re-id features, GOG [10] and Local Maximal
1Please note the D-th order M has moments up to order 2D
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Occurrence feature (LOMO) [42], also take advantage of this assumption and apply information

pooling along the same horizontal strip. In this work, mean pooling is used to represent the patches

at the same height. Since M is an SPD matrix, all Ms lie on an SPD manifold. Then on-manifold

distance should be applied to compute the mean matrix. In this work, we adopt Log-Euclidean

Riemannian Metric (LE) [45] as in (3.6) to calculate the distances between two SPD matrices:

σLE(Mp1,Mp2) = ‖ log(Mp1)− log(Mp2)‖ (3.6)

and the associated on-manifold mean for strip s is defined as follows:

M̄s = exp(
1

Q

Q∑
p=1

log(Mp)) (3.7)

where Q is the number of patches in strip s and exp(·) denotes the matrix exponential operator.

The benefits of using LE as the on-manifold metric are two-fold: 1) it has a closed form

solution and can be computed very efficiently; 2) to feed the feature to off-shelf metric learning

methods, one can transfer the SPD matrices into Euclidean space by taking the logarithm, which will

cancel the exp(·).

The final vectorized moM feature gs for strip s is obtained by equation (3.8)

Γs = log(M̄s)

gs =vec(Γs)

=
[
Γ(1, 1),

√
2Γ(1, 2), . . . ,Γ(2, 2),

√
2Γ(2, 3), . . .

] (3.8)

where log(·) denotes the matrix logarithm operator and
√

2 applies on off-diagonal elements to keep

the condition ‖Γs‖F = ‖gs‖2 holding. To reduce the numerical problem caused by the logarithm of

small eigenvalues of the moment matrix, all Mp are normalized to det(Mp) = 1. The final feature

vector f is the concatenation of all gs in different strips. Following the setting in [10, 9], we also

apply mean removal and power normalization. Thus, the moM descriptor is normalized by (3.9)

fnorm =sign(f − µf )|f − µf |0.5 (3.9)

where | · | is the absolute value and µf is the mean of all moM features in the training set.
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Algorithm 1 moM feature extraction
Require: Image I , number of horizontal strips S, number of patches per strip Q, moment matrix

order D,

1: Compute pixel features in (3.5)

2: for strip s = 1 to S do

3: for patch p = 1 to Q do

4: Compute moment matrix Mp based on (3.2)

5: end for

6: Compute on-manifold mean M̄s based on (3.7)

7: Compute the feature of gs based on (3.8)

8: end for

9: Concatenate g1,2,...,S to form the final moM feature f

14



Chapter 4

Person Re-Identification

Person Re-identification (re-ID), in general, is defined as re-identifying a human of interest

in a set of images or videos captured by cameras with limited or no overlapping fields of view. In

the past decade, due to the emerging demands of real-world problem, such as security and video

surveillance in large public area, researchers have dedicated significant amount of efforts to push the

state-of-art of this problem. Figure 4.1 illustrates the divisions and sequence of modern re-ID system.

Person 
detection Tracking Feature 

extraction
Matching

Person 
detection Tracking Feature 

extraction

Image/
Video

Image/
Video

Probe

Gallery

Rank

Figure 4.1: A typical end-to-end re-ID system pipeline.

Starting as part of the multi-camera tracking system, person re-ID has been separated as

an independent computer vision problem by Gheissari et al. [46]. Later, after the release of very

first re-ID dataset VIPeR [47], several single-shot methods were proposed [48, 49], which only used

one shot probe image to query the correct matching in the gallery set. On the other hand, assuming

the availability of multiple shots of a target person available, multi-shot re-ID also attracted the

interests of many researchers [50, 51, 37]. Furthermore, by extending multiple shots to a short

video clip, Wang et al. [52] started the work on video-based re-ID and drew a lot attentions from

other researchers [53, 54, 55, 56]. Around the same time, several unsupervised re-ID methods

[57, 58, 59, 60] were proposed to tackle the challenge of ground truth labeling for person re-ID. Due

to the same challenge, relatively small datasets limited the adoption of deep learning methods on
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Figure 4.2: The challenge of re-ID problem

re-ID until the appearance of two large scale datasets, CUHK03 [61] and Market1501 [62]. Following

that, methods based on both CNN and RNN were studied from 2014 [61, 63, 64, 65, 66, 67]. Recently,

instead of assuming perfect Bounding boxes (BBox) and trajectories from manual labeling, several

end-to-end re-ID datasets with automatically person detector and tracking modules were released to

test the robustness of new methods. For more details, we refer the reader to [68, 69, 70, 71].

Even though the re-ID system can obtain perfect BBox from the person detector and

tracker, it is still a very challenging problem because of the severe intra-class variance between

different cameras. Figure 4.2 shows the challenge of a typical re-ID problem. The example of hard

cases are, from left to right, resolution, occlusion, viewpoints, different poses, illumination and

similar appearance of different people.

Most of the existing re-id literature focuses on two aspects of the problem: 1) designing

viewpoint invariant feature descriptors [37, 40, 38, 42, 39, 72, 41, 10, 73, 74] and/or 2) learning a

supervised classifier to alleviate the effect of the variances across the cameras [75, 42, 36, 76, 77, 48,

78, 79, 80, 81]. Recently, deep neural networks have been adopted to learn both the descriptor and

classifier simultaneously [63, 82, 61, 64]. For more details, we refer the reader to [68, 69, 70, 71].

Person re-id specific hand-crafted features mainly focus on the invariance across different

cameras. In [50], based on the symmetric axis of each body part, a carefully designed body
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configuration was modeled. Then, the weighted color histogram was computed, depending on the

distance between the pixel and the axis. The final representation was also combined with maximally

stable color regions (MSCR) and recurrent high-structured patches (RHSP). Ma et al. [72] used the

biological inspired feature (BIF) as the raw feature and compressed it using the similarity between

the covariance matrices of small patches. Since then, following the development of metric learning

methods, researchers tend to use native but redundant features to feed into the supervised learned

metric. Gary and Tao [47] used 8 color channels (RGB, HS, and YUV) and 21 texture filters. In

[83], responses of texture filters were substituted by LBP features. Instead of color histogram, in

[84], the local mean of each patch was adopted. Pedagadi et al. [77] added the first three moments to

the color histogram to represent a small patch. More recently, Zhao et al. [74] combined the LAB

histogram with dense SIFT descriptors on a densely sampled grid. To obtain a stable representation,

color names have been applied recently. In [73], salience color name distributions were computed

over different color models to remedy the illumination variance. Zheng et al. [62] encoded the local

color name descriptors through Bag-of-Words. Liao et al. [42] proposed maximum-pooling the color

and SILTP [85] histogram along the same horizontal strip to achieve better viewpoint invariance.

Covariance and Gaussian descriptors have been applied in person re-id, to compress more

information than histogram and local mean. In [37], pixel level color intensity and gradient in a local

patch are compressed into a covariance matrix. Ma et al. [39] modeled the low level feature with a

Gaussian distribution and compare the Gaussian with the product on Lie group. In [41], GMM is

used to model the pixel feature by assuming the variants are independent of each other. Inspired by

LOMO [42], a hierarchical Gaussian feature (GOG) was proposed in [10]. Similar to previous work,

pixel features in a small patch are modeled by a Gaussian distribution, which is embedded in an SPD

manifold. Then, the second level models the distribution of the first level descriptors within a strip

around the same height.

4.1 Datasets

We evaluate the proposed moM feature using four widely used hand labeled re-id bench-

mark datasets and one large-scale automatically detected dataset.

VIPeR [47] contains images of 632 persons. Each person has two images taken from

different viewpoints. All identities are separated into training and testing sets equally. One view

is fixed as the probe view. This procedure was repeated 10 times and the average performance is

reported.
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QMUL underGround Re-IDentification (GRID) [86] dataset has 250 paired pedestrians

and 775 un-paired distractions captured in a subway station. The large size of the gallery set and

relatively low image quality make it one of the most challenging re-id datasets. We use the provided

partition configuration.

PRID450s [87] is a subset of PRID2011 [38] with 450 persons and 2 cameras. Each person

has one image per camera. Similar to VIPeR dataset, the train and test sets are equally separated and

one camera is fixed as the probe one. Ten repeated evaluations are performed and the average result

is reported.

Market1501 [62] dataset is a recently proposed large scale re-id dataset. It contains 1501

identities from 6 cameras. All bounding boxes are automatically detected with DPM [50] algorithm

and manually annotated. In total, it contains 32,668 bounding boxes including 2,793 false alarms

from the person detector. We adopt the provided train/test partition to evaluate our feature.

4.2 Implementation details

First of all, we reshape all images to the size of 128 × 48, and the patch size is set to

16 × 16 with 50% overlap, which will generate 15 horizontal strips. The order D is set to 2, so

the moment matrix size is 45 × 45. Therefore, the final dimension of the feature with RGB is

(45× 46/2)× 15 = 15, 525. Following the setting in [10], we weight the patches according to their

position on x axis as wp = e−(xp−xc)
2/2σ2

, where xc = W/2 and σ = W/4. xp is the x coordinate

of the center point of patch p and W is the width of the image. We also fuse moM from different

color channels to boost the performance. Results with fused feature are noted with subscripts “f”.

For all the experiments, kLFDA with linear kernel [78] is used as the metric learning algorithm.

4.3 Experiments

4.3.1 Method analysis

Patch size: Figure 4.3(a) shows the results with different patch sizes. For a fair comparison,

we keep the adjacent patches with 50% overlapping. We note that the performance decreases when

the patch size is either too small or too large. On the one hand, there is not enough number of pixels

within small patches to estimate the higher order moment matrix. Moreover, small patches tend to

be less discriminant because they only model local information. As shown in the results, the rank 1
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Figure 4.3: Performance analysis on VIPeR dataset.

performance downgrades 6.3% when the patch size shrinks to 5×5. On the other hand, although

large patches provide enough samples to estimate complex distributions, they encode specific pose

and lose multi-view invariance. Therefore, we choose a median patch size of 16×16 to compromise

the discriminating and invariant properties.

Normalization: Figure 4.3(b) illustrates the effects of applying different normalizations.

By forcing the product of eigenvalues equal to 1, the determinant normalization improves the result

by 4.4%. Because most of the elements of higher order moments are small numbers, their logarithms

are large negative values, which overwhelm the variance on that dimension. The mean removal step

will center all dimensions while keeping the variance at the same time. The power normalization

reduces the “spike” situation further more. Combining these two steps improves the rank 1 accuracy

by 7.1%. Adding `2 normalization decreases it by 1.3%.

Moment matrix order: In Table 4.1, the first three rows show the results with D = 1.

Comparing to the results with the following three rows with D = 2, the average rank1 performance

with different on-manifold means increases by 7.4%, 9.8%, 16.3% and 5.5% on VIPeR, CUHK01,

PRID450s and GRID, respectively. One can also observe a distinct margin between the blue curves

and the other curves in Figure 4.4. This shows that the higher order moments are informative to

boost the performance of the descriptor.

On-manifold metric: Besides the LE metric, there are several other metrics for the SPD

manifold. Here, we also compare the performance using Jeffery Divergence (Jeff) [88] and Jensen-

Bregman Log-det Divergence (JBLD) [89] on four datasets. Experimental results are shown in
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Table 4.1 with different superscripts. These means are defined as:

M̄
(t+1)
JBLD =

 1

Q

Q∑
p=1

(
Mp + M̄

(t)
JBLD

2

)−1−1 (4.1)

M̄Jeff = P−1/2(P1/2QP1/2)1/2P−1/2,with

P =

Q∑
p=1

M−1
p ,Q =

Q∑
p=1

Mp.
(4.2)

When only using the RGB as the color channels, although moMJeff
rgb outperforms moMLE

rgb

by 0.9% on VIPeR rank1 result, moMLE
rgb beats the others on CUHK01, PRID450s and GRID datasets.

On average, moMLE
rgb achieves 2.3% and 1.3% higher rank1 performance along the four datasets

compared with moMJeff
rgb and moMJBLD

rgb , respectively. When fusing with other color channels and

the GOG feature, moM with LE performs slightly better than JBLD.

Table 4.1: Comparing with different Ds and on-manifold means. The best results in each dataset are
marked in red.

Dataset VIPeR CUHK01 PRID450s GRID

Methods r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

moMrgb
Jeff (D=1) 31.4 59.2 71.8 82.7 38.2 57.9 66.5 75.2 38.4 63.9 75.2 84.6 12.2 27.8 35.0 45.8

moMrgb
JBLD (D=1) 33.0 61.0 73.1 82.8 41.8 62.4 70.7 79.2 46.4 71.0 80.2 87.9 15.4 30.0 37.8 48.5

moMrgb
LE (D=1) 33.1 59.4 72.1 82.7 42.9 62.7 70.8 79.3 47.9 70.0 80.3 88.9 15.5 30.0 38.5 48.6

moMrgb
Jeff 40.8 71.0 82.1 90.8 48.6 70.9 78.9 86.4 59.6 82.1 89.2 94.5 17.8 39.4 49.8 62.2

moMrgb
JBLD 39.0 71.1 81.1 89.6 51.7 73.4 81.1 87.8 59.5 82.6 89.4 95.0 20.4 40.1 51.2 62.7

moMrgb
LE 39.9 69.4 80.0 88.4 52.1 73.4 80.9 87.6 62.5 83.7 90.7 96.5 21.4 42.0 51.9 62.6

GOGrgb 41.4 74.7 85.4 92.6 53.7 76.0 83.6 89.8 62.9 84.6 92.0 96.1 20.2 38.7 49.2 59.8

moMrgb
JBLD+GOGrgb 46.0 77.3 86.7 93.8 62.3 83.2 89.3 93.5 67.6 87.6 93.8 97.4 22.2 44.2 55.7 66.1

moMrgb
LE+GOGrgb 46.9 77.4 87.2 93.0 62.4 83.0 88.9 93.3 68.6 89.2 94.8 97.4 23.1 44.5 56.2 66.7

moMf
JBLD 48.0 77.9 86.6 92.2 57.7 78.5 85.3 90.8 66.0 85.9 92.6 97.1 22.6 44.6 54.9 64.8

moMf
LE 48.0 76.8 85.4 92.1 57.3 78.1 85.1 90.7 65.9 87.2 93.1 97.2 23.4 44.6 54.8 65.4

GOGf 48.8 79.6 88.8 94.6 57.3 79.9 87.0 92.5 68.4 88.5 94.2 97.2 21.8 43.3 52.7 63.5

moMf
JBLD+GOGf 52.1 82.1 89.2 94.5 64.3 85.1 90.7 94.9 71.1 91.2 95.4 97.8 23.6 46.3 57.4 67.4

moMf
LE+GOGf 53.3 82.3 89.5 94.8 64.6 84.9 90.6 94.8 71.1 91.3 95.4 97.9 24.5 46.1 56.8 66.9

4.3.2 Comparison with GOG descriptor

The results in Table 4.1 and Figure 4.4 compare the performances of the moM features, the

GOG features and the combination of both of them. We ran the code provided by the authors of [10]

and set the patch size to 15× 151 and number of strips to 15. Among all four datasets, moMrgb
LE

1The code provided can only accept odd number as the patch size
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Figure 4.4: CMC curves for (a)VIPeR, (b)CUHK01, (c)PRID450s and (d)GRID datasets
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obtains slightly worse results in VIPeR and CUHK01, comparable result in PRID450s and better

result in GRID. When fusing with all different color channels, moMf
LE performs worse in VIPeR

and PRID450s, comparable in CUHK01 and better in GRID. However, by simply concatenating

moM and GOG, a consistent out-performance can be achieved. In Figure 4.4, one can observe a

clear margin between green and red curves and pink and black curves. Specifically, with the RGB

color channel, adding moMrgb
LE to GOGrgb improves the rank 1 performance by 5.5%, 8.7%, 5.7%

and 2.9%, respectively. After fusing with all different color channels, adding moMrgb
LE to GOGrgb

further improve the rank 1 performance by 4.5%, 7.3%, 2.7% and 2.7%, respectively. The result

implies that moM and GOG features encapsulate complementary appearance informations. In the

following, we will name this combination ac Combination of Mean of Moment matrix feature and

Gaussian of Gaussian feature (moMaGO).

This observation can be explained by noting that the GOG feature has up to 2nd order

information of the distribution of the distributions representing the patches. However, it contains no

information about the higher order (greater than 2) moments of these patches. On the other hand, the

moM feature has information about the mean value (across patches) of the higher order moments,

but not about their variance. Thus, one can think of the combination of GOG and moM as a tractable

approximation to a “Moments of Moments” feature, where GOG provides information about the

variance of 1st and 2nd order moments while moM provides information about the mean value of

all moments (up to 4th order). For x ∈ R8 this leads to a feature vector with O(103) elements, as

opposed to a true Moment of Moments feature (D = 2) that would have O(106) elements.

Figure 4.5 gives two qualitative analysis examples. When the identity has fine-detailed

appearance patterns, moM feature preserves those patterns better than the GOG feature. In the first

example, moM feature captures the backpack with rich texture in the probe image and retrieves the

gallery images with similar pattern to top two and finds the correct matching at rank 1. On the other

hand, when the identity has homogeneous local texture but relatively complex patterns along the

strip, GOG feature is preferred. In the second example, the strip level second order moment helps to

preserve the blue/black/skin color pattern along the upper body part.

4.3.3 Comparison with state-of-the-art methods

In Table 4.2, we compare the combination of moMf
LE and GOGf

2 with recently published

re-id methods. In four datasets, we achieve new state-of-the-art performance on CUHK01 and
2Please note that the GOG feature we used has a different setting from [10]
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Figure 4.5: Examples for moM and GOG features. The very left image is the probe image and the
first row on the right hand side is the result from GOGrgb and the second row is from moMrgb

LE.
The correct match is labeled with a red box. The first example shows the situation moM feature is
preferred while the second one shows the case GOG feature is better. Please see the text for more
analysis.

Table 4.2: Comparison with state-of-the-art methods. The best results in each dataset are marked in
red and the second best in blue.

VIPeR CUHK01 PRID450s GRID

Methods Reference r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

moMaGO2 Ours 53.3 82.3 89.5 94.8 64.6 84.9 90.6 94.8 71.1 91.3 95.4 97.9 24.5 46.1 56.8 66.9

SSDAL + XQDA ECCV16[66] 43.5 71.8 81.5 89.0 - - - - - - - - 22.4 39.2 48.0 58.4

SCSP CVPR16[90] 53.5 82.6 91.5 96.7 - - - - - - - - 24.2 44.6 54.1 65.2

GOGf + XQDA CVPR16[10] 49.7 79.7 88.7 94.5 57.9 79.2 86.2 92.1 68.0 88.7 94.4 97.6 24.8 47.0 58.4 68.9

TCP CVPR16[82] 47.8 74.7 84.8 91.1 53.7 84.3 91.0 96.3 - - - - - - - -

SS-SVM CVPR16[80] 42.7 - 84.3 91.9 - - - - 60.5 - 88.6 93.6 22.4 - 51.3 61.2

MLAPG ICCV15[36] 40.7 - 82.3 92.4 - - - - - - - - 16.6 - 41.2 53.0

Metric Ensumble CVPR15[76] 45.9 77.5 88.9 95.8 53.4 76.4 84.4 90.5 - - - - - - - -

LOMO+XQDA CVPR15[42] 40.0 - 80.5 91.1 49.2 75.5 84.2 90.8 62.6 85.6 92.0 96.6 16.6 - 41.8 52.4

SCNCD ECCV14[73] 37.8 68.5 81.2 90.4 - - - - 41.6 68.9 79.4 87.8 - - - -
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Table 4.3: Comparison with state-of-the-art on Market1501 dataset.

Method Reference r=1 mAP

moMLE
f +GOGf Ours 71.6 43.5

moMLE
f Ours 61.0 30.3

GOGf CVPR16 [10] 2 66.7 38.5

Gated S-CNN ECCV16[64] 65.9 39.6

S-LST ECCV16[65] 61.6 35.3

SSDAL+XQDA ECCV16[66] 39.4 19.6

SCSP CVPR16[90] 51.9 26.4

DNS CVPR16[79] 55.4 29.9

BoW+KISSME ICCV15[62] 44.4 20.8

PRID450s and outperform the second best by 6.7% and 3.1%, respectively. In VIPeR and GRID

it attains the second best performance with only slightly loss. To show the generalization of moM

on a large scale, automatically detected, dataset we compare with state-of-the-art works on the

Market1501 dataset in Table 4.3. To be consistent with previous experiments, we report the result

of GOGf with the same setting in Table 4.1. By combing with our proposed moM feature, the

complementary information brings a 4.9% improvement on rank 1 performance and increases by 5%

on mAP, setting a new state-of-the-art in this dataset.
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Chapter 5

New Datasets and Benchmark for

Person Re-Identification

Existing re-id algorithms are typically evaluated on datasets that are either hand-curated or

pruned with a person detector to contain sets of bounding boxes for the probes and the corresponding

matching candidates. On the other hand, real-world end-to-end surveillance systems include auto-

matic detection and tracking modules, as depicted in Figure 4.1, that generate candidates on-the-fly,

resulting in gallery sets that are dynamic in nature. Furthermore, errors in these modules may result

in bounding boxes that may not accurately represent a human [91]. As noted in our recent benchmark

paper [92], the size of a dataset, in terms of both number of identities as well as number of bounding

boxes, is critical to achieve good performance. Furthermore, in real-world end-to-end surveillance

systems, as noted in Camps et al. [91], we can use camera calibration information to predict motion

patterns, potentially helping to prune out irrelevant candidates and reducing the search space. While

these issues are critical in practical re-id applications, they are not well-represented in the currently

available datasets. To this end, we propose two new, large-scale datasets constructed from images

captured in a challenging surveillance camera network.

We also present an up-to-date performance benchmark for these datasets, in which we

test 10, including the proposed moM and moMaGO, different features and 12 different metric

learning methods. The goal is to validate the effectiveness of statistical moment modeling feature

and systematically study how existing re-ID algorithms fare on the new datasets. The code library

has been published and can be accessed via https://github.com/RSL-NEU/person-reid-benchmark.
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5.1 re-ID Datasets

Table 5.1: An overview of existing widely used re-id datasets.
Dataset Year # people # BBox # FP # distractors # cameras Environment Label source Video? Full frame?

VIPeR [47] 2007 632 1,264 0 0 2 - hand N N

ETHZ [93] 2007 148 8,580 0 0 1 - hand N N

QMUL iLIDS [94] 2009 119 476 0 0 2 airport hand N N

GRID [95] 2009 1,025 1,275 0 775 8 subway hand N N

3DPeS [96] 2011 192 1,011 0 0 8 campus hand N Y

PRID2011 [38] 2011 934 24,541 0 732 2 campus hand Y Y

CAVIAR4ReID [51] 2011 72 1,220 0 22 2 mall hand N Y

V47 [97] 2011 47 752 0 0 2 - hand N Y

WARD [98] 2012 70 4,786 0 0 3 - hand Y N

SAIVT-Softbio [99] 2012 152 64,472 0 0 8 campus hand Y Y

CUHK01 [100] 2012 971 3,884 0 0 2 campus hand N N

CUHK02 [101] 2013 1,816 7,264 0 0 10 (5 pairs) campus hand N N

CUHK03 [61] 2014 1,467 13,164 0 0 10 (5 pairs) campus hand/DPM [102] N N

HDA+ [103] 2014 53 2,976 2,062 20 13 office hand/ACF [104] N Y

RAiD [105] 2014 43 6,920 0 0 4 campus hand N N

iLIDS-VID [52] 2014 300 42,495 0 0 2 airport hand Y N

Market1501 [62] 2015 1,501 32,217 2,798+500K 0 6 campus hand/DPM [102] N N

MARS [56] 2016 1,261 1,191,003 147,744 0 6 campus DPM [102]+GMMCP [106] Y N

DukeMTMC-reID [107] 2017 1,812 36,441 0 408 8 campus hand N Y

DukeMTMC4ReID 2017 1,852 46,261 21,551 439 8 campus Doppia [108] N Y

Airport 2017 9,651 39,902 9,659 8,269 6 airport ACF [104] N N

Table 5.1 provides a statistical summary of these datasets. In the table and following

content, we define an identity as a person with images in both the probe and gallery cameras, a

distractor as a person only appearing in one camera, and an FP as a false alarm from the person

detector.

VIPeR [47] is one of the earliest available and most widely used datasets, consisting of 632

identities from two disjoint camera views. GRID [95] has 250 paired identities across 8 cameras, in

addition to 775 distractor identities to mimic a realistic scenario. 3DPeS [96] consists of 1,011 images

corresponding to 192 identities, captured in an 8-camera network. PRID2011 [38] is constructed in an

outdoor environment, with 200 paired identities captured in two camera views. CAVIAR4ReID [51]

is constructed from two cameras placed inside a shopping mall, with 50 paired identities available.

V47 [97] captures 47 identities in an indoor environment. WARD [98] captures 70 identities in a

3-camera network. SAIVT-Softbio [99] captures 152 identities in an 8-camera surveillance network

installed on a campus. HDA+ [103] captures 53 identities in an indoor environment, in addition to a

number of distractor identities for the gallery. RAiD [105] captures 43 identities as seen from two

indoor and two outdoor cameras. iLIDS-VID [52] captures 300 identities in an indoor surveillance

camera network installed in an airport. Market1501 [62] captures 1,501 identities in addition to
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Figure 5.1: Samples of images from the proposed Airport dataset.

2,798 false positives and 500k distractors, providing for a realistic gallery. Airport [92] represents a

realistic scenario in which 1,382 identities are captured in a 6-camera indoor surveillance network in

an airport. All images are automatically generated by means of an end-to-end re-id system [91, 109].

MARS [56] is a video extension of the Market1501 dataset, with long-duration image sequences

captured for 1,261 identities.

5.1.1 Airport Dataset

The airport dataset was collected using a surveillance network with six cameras. It covers a

secure area within a mid-sized airport with one checkpoint and three possible connected concourses.

All cameras recorded 12-hour long videos from 8 AM to 8PM with 768× 432 resolution at 30 frames

per second. Because of the restricted covered area, we assume the target person spends limited time

inside the camera network. Therefore, we randomly picked 40 five minutes long video clips for each

long video. To mimic the real world application, bounding boxes of the person are generated with a

real-time end-to-end prototype described in [91]. Specifically, Aggregated Channel Features (ACF)

[104] is adopted to generate person detections and the combination of FAST corner features [19]

and the KLT tracker [110] is utilized to track people and associate detections. The dataset can be

requested at http://www.northeastern.edu/alert/transitioning-technology/alert-datasets/alert-airport-

re-identification-dataset/.

Unlike other datasets that capture image data from public environments such as universities

[111, 112] [56] [113], shopping locations [51], or publicly accessible spots in transportation gateways

[114], the Airport dataset provides data captured from video streams inside the secure area, post

the security checkpoint, of a major airport. It is generally very difficult to obtain data from such a
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camera network, in which configuration settings (e.g., network topology and placement of cameras)

are driven by security requirements. For instance, most academic datasets have images taken from

cameras with optical axes parallel to the ground plane, as opposed to the real world where the angle

is usually much larger due to constraints on where and how the cameras can be installed. This aspect

is explicitly captured by the Airport dataset. Unlike other datasets that primarily capture images

of people in a university setup (e.g., Market1501, CUHK) , the Airport dataset captures images

of people from an eclectic mix of professions, leading to a richer, more diversified set of images.

Another key difference with existing datasets is the temporal aspect; we capture richer time-varying

crowd dynamics, i.e., the density of people appearing in the source videos naturally varies according

to the flight schedule at each hour. Such time-varying behavior can help evaluate the temporal

performance of re-id algorithms, an understudied area [115].

Since all the bounding boxes were generated automatically without any manual annotation,

this dataset accurately mimics a real-world re-id problem setting. A typical fully automatic re-id

system should be able to automatically detect, track, and match people seen in the gallery camera,

and the proposed dataset exactly reflects this setup. In total, from all the short video clips, tracks

corresponding to 9,651 unique people were extracted. The number of bounding box images in the

dataset is 39,902, giving an average of 3.13 images per person. The sizes of detected bounding boxes

range from 130×54 to 403×166. 1,382 of the 9,651 people are paired in at least two cameras. A

number of unpaired people are also included in the dataset to simulate how a real-world re-id system

would work: given a person of interest in the probe camera, a real system would automatically

detect and track all the people seen in the gallery camera. Therefore, having a dataset with a large

number of unpaired people greatly facilitates algorithmic re-id research by closely simulating a

real-world environment. While this aspect is discussed in more detail in our system paper [116], we

briefly describe how this dataset can be used to validate detection and tracking algorithms typically

used in an end-to-end re-id system. Specifically, since we have both valid and invalid detections in

our dataset, we can use them interchangeably to evaluate the impact of the detection module. For

instance, adding invalid detections to the gallery would help evaluate the need for more detection

accuracy at the cost of computation time. Since we have access to multiple broken tracklets for each

person, we can interchangeably use them to evaluate the impact of the tracking module. For instance,

manually associating all broken tracklets can help evaluate the need for more tracking accuracy at

the cost of computation time. We can also fuse these two concepts together to evaluate the need for

more detection and tracking accuracy together, helping understand the upper-bound performance

of real-world systems. A sample of the images available in the dataset is shown in Figure 5.1. As
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Figure 5.2: Samples of images from the proposed DukeMTMC4ReID dataset

can be seen from the figure, these are the kind of images one would expect from a fully automated

system with detection and tracking modules working in a real-world surveillance environment.

5.1.2 DukeMTMC4ReID

The DukeMTMC4ReID dataset was derived from the DukeMTMC dataset for multi-target

tracking [112]. We note that Zheng et al. [107] also recently proposed a re-id dataset, called

DukeMTMC-reID, based on DukeMTMC. However, our proposed dataset is significantly different

on several fronts. While DukeMTMC-reID uses manually labeled ground truth, the proposed dataset

uses person detections from an automatic person detector. Furthermore, DukeMTMC-reID does

not include any false alarms from the detector in the gallery, while the proposed dataset has over

20,000 false alarms. Therefore, the proposed dataset is more realistic in the sense that it mimics how

a practical re-id system would work in the real world.

Table 5.2: Basic statistics of the proposed DukeMTMC4ReID dataset

Total cam1 cam2 cam3 cam4 cam5 cam6 cam7 cam8

# bboxes 46,261 10,048 4,469 5,117 2,040 2,400 10,632 4,335 7,220

# person bboxes 24,710 4,220 4,030 1,975 1,640 2,195 3,635 2,285 4,730

# “FP” bboxes 21,551 5,828 439 3,142 400 205 6,997 2,050 2,490

# persons 1,852 844 806 395 328 439 727 457 946

# valid ids 1,413 828 778 394 322 439 718 457 567

# distractors 439 16 28 1 6 0 9 0 379

# probe ids 706 403 373 200 168 209 358 243 284
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All frames in the DukeMTMC dataset were captured by 8 static cameras on the Duke

University campus in 1080p and at 60 frames per second (Figure 5.3). In total, more than 2,700

people were labeled with unique IDs in eight 75-minute videos. The tight bounding boxes of each

person for each frame are generated based on background subtraction and manually labeled foot

positions in a few frames. Regions of interest (normal paths on the ground plane) and calibration

data are also provided. The entire dataset is split into three parts: one training/validation set labeled

“trainval” and two testing sets labeled “test-hard” and “test-easy”. To date, only labels from the

“trainval” set have been released, which contains 1,852 unique identities in eight 50-minute videos

(dataset frames 49,700–227,540).

Figure 5.3: Layout of the cameras in the DukeMTMC dataset (from [1])

Based on this dataset, we constructed a large-scale real-world person re-id dataset: Duke-

MTMC4ReID. Following the recently proposed Market1501 [62] and CUHK03 [61] datasets,

bounding boxes from an off-the-shelf person detector are used to mimic real-world systems. We

used a fast state-of-the-art person detector [108] for accurate detections, which are filtered using

predefined regions of interest to remove false alarms, e.g., bounding boxes on walls or in the sky.

Then, following Market1501, based on the overlap ratio between the detection and ground truth (i.e.,

the ratio of the intersection to the union), we label the bounding box as “good” if the ratio is greater

than 50%, false positive (“FP” ) if the ratio is smaller than 20%, and “junk” otherwise. For each

identity, we uniformly sample 5 “good” bounding boxes in each available camera, while retaining all

the “FP” bounding boxes in the corresponding frames. To summarize, the relevant statistics of the

proposed DukeMTMC4ReID dataset are provided below:

• Images corresponding to 1,852 people existing across all the 8 cameras
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• 1,413 unique identities with 22,515 bounding boxes that appear in more than one camera (valid

identities)

• 439 distractor identities with 2,195 bounding boxes that appear in only one camera, in addition

to 21,551 “FP” bounding boxes from the person detector

• The size of the bounding box varies from 72×34 pixels to 415×188 pixels

Table 5.2 tabulates these and other statistics of the proposed DukeMTMC4ReID dataset. The dataset

can be downloaded at https://github.com/NEU-Gou/DukeReID.

5.2 Benchmark

Next, we present the details of our systematic experimental evaluation of 10 existing feature

extraction algorithms and 12 existing metric learning algorithms for re-id, producing an up-to-date

benchmark on the proposed dataset.

5.2.1 Feature Extraction

Following the protocol described in [92], we evaluated 7 different feature extraction

algorithms published up through CVPR 2016 (Table 5.3), which we briefly describe next. ELF

[47] extracts color features from the RGB, YCbCr and HS color channels and texture features from

the responses of multiple Schmid and Gabor filters. In HistLBP, Xiong et al. [78] substituted the

Schmid and Gabor texture responses with LBP features, while Dense Color SIFT feature (SDC)

[57] uses dense SIFT features. gBiCov [72] uses the covariance descriptor to encode multi-scale

biological-inspired features. Local Descriptors encoded by Fisher Vector (LDFV) [41] uses the Fisher

vector representation to encode local pixel-level information. Weighted Histograms of Overlapping

Stripes feature (WHOS) [81] extract the color histogram and LBP and weighed with a Gaussian

mask to remove the background. LOMO [42] extracts HSV color histogram and scale-invariant LBP

features from the image in conjunction with multi-scale retinex preprocessing.

5.2.2 Metric Learning

Table 5.4 lists all the metric learning methods that were evaluated, which we briefly

describe next. Fisher discriminant analysis (FDA) [118], Local Fisher Discriminant Analysis (LFDA)

[77], Marginal Fisher Analysis (MFA) [119], and cross-view quadratic discriminant analysis (XQDA)
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Table 5.3: Evaluated features

Feature Source

ELF [47] ECCV 08

LDFV [41] ECCVW 12

gBiCov [72] BMVC 12

SDC [57] CVPR 13

HistLBP [78] ECCV 14

LOMO [42] CVPR 15

WHOS [81] TPAMI 15

GOG [10] CVPR 16

moM [117] CVPRW 17

moMaGO [117] CVPRW 17

[42] all solve eigenvalue problems based on general discriminant analysis to learn the distance metric.

Xiong et al. [78] proposed kernelized variants of LFDA and MFA. Discriminative Null Space

Learning (NFST) [79] force the within class distance to zero to improve the discrimination. Keep-

It-Simple-and-Straightforward MEtric (KISSME) [75] learns the distance metric via a maximum

log-likelihood ratio test. Pairwise Constrained Component Analysise (PCCA) [83] uses a hinge loss

objective function, while rPCCA [78] extends it by introducing a regularization term. In SVMML

[120], a locally adaptive distance metric is learned in a soft-margin SVM framework. For all the

kernel-based methods, we evaluated 4 different kernels: linear (`), chi-square (χ2), chi-square-rbf

(Rχ2) and exponential (exp).

Table 5.4: Evaluated metric learning methods

Metric Source Metric Source

FDA [118] AE 1936 SVMML [120] CVPR 13

MFA [119] PAMI 07 kMFA [78] ECCV 14

KISSME [75] CVPR12 rPCCA [78] ECCV 14

PCCA [83] CVPR 12 kLFDA [78] ECCV 14

kPCCA [83] CVPR 12 XQDA [42] CVPR 15

LFDA [77] CVPR 13 NFST [79] CVPR 16
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5.2.3 Implementation Details

Prior to feature extraction, all bounding boxes are normalized to 128×64 pixels. In LDFV,

the number of Gaussians for the GMM is set to 16. The number of bins in the color histogram for

HistLBP and ELF is set to 16, and we use RGB as the color space in GOG. In metric learning, we set

the subspace dimension to 40 and the negative-to-positive pair ratio to construct the training data to

10.

Figure 5.4: CMC curves for the benchmark on the Airport dataset. The top 10 performing algorithms
are shown in color and the rest are shown in gray. Numbers in the brackets in the legend are the
corresponding mAP value

5.2.4 Results and discussion

All experimental results are shown in Table 5.5 and 5.6 and the corresponding CMC curves

are shown in Figure 5.4 and 5.5. For both benchmark datasets, the combination of moMaGO and

NFST achieves the best performance. We will discuss the two factors feature selection and metric

learning methods separately.

First, moMaGO feature dominates the performance in both datasets. Specifically, in the

Airpot dataset, it obtains the second best or better results with all possible metric learning methods

except KISSME. In the DukeMTMC4ReID dataset, it performs the best with all possible metric
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Table 5.5: Rank 1 results from all feature/method combinations for Airport dataset. The best result
for each metric learning is marked in red and the second best is in blue. The best combination across
the whole dataset is mark in bold red.

Airport Kernel HistLBP ELF LDFV gBiCov SDC LOMO WHOS GOG moM moMaGO

FDA 15.7 16.2 15.2 13.9 14.4 16.9 15.7 20.1 25.7 29.2

LFDA 16.0 17.8 14.7 13.6 15.2 17.8 17.2 20.8 26.8 29.8

` 21.2 22.4 21.3 12.7 16.0 28.3 26.1 29.8 33.8 36.7

χ2 22.8 26.6 - 12.9 20.1 29.1 26.3 - - -

Rχ2 24.5 25.9 - 10.0 19.5 26.4 24.9 - - -
kLFDA

exp 22.9 25.3 26.0 14.0 18.2 31.9 26.6 34.0 29.9 37.4

PCCA 5.3 2.8 4.6 5.9 2.0 4.1 2.3 7.0 10.9 11.5

` 3.6 8.9 4.6 7.3 4.4 6.2 7.2 7.3 10.9 13.0

χ2 6.9 5.3 - 7.8 3.8 5.4 9.7 - - -

Rχ2 6.4 8.7 - 4.1 6.7 7.3 11.5 - - -
kPCCA

exp 8.8 10.0 11.1 9.6 6.7 13.4 13.0 18.7 14.6 17.4

` 3.3 7.8 4.5 7.3 6.0 5.2 7.7 8.2 7.8 8.9

χ2 5.9 8.4 - 7.7 3.5 5.5 10.4 - - -

Rχ2 5.5 10.3 - 4.0 3.2 7.3 11.0 - - -
rPCCA

exp 9.8 10.0 11.1 8.5 6.3 13.7 13.5 18.0 13.8 20.4

MFA 13.9 10.0 3.6 11.5 6.5 8.3 4.6 15.8 14.6 21.7

` 17.2 21.3 19.0 11.8 13.8 21.6 24.0 29.9 31.4 32.5

χ2 18.1 25.2 - 10.8 15.8 22.1 24.4 - - -

Rχ2 15.3 24.1 - 8.8 14.5 23.1 27.0 - - -
kMFA

exp 17.0 21.5 25.9 14.2 26.6 26.5 33.8 33.1 37.6

` 2.5 2.4 1.5 1.2 1.8 3.4 2.2 5.6 4.1 13.3

χ2 4.0 4.8 - 3.4 5.3 2.7 7.6 - - -

Rχ2 15.2 18.8 - 4.4 16.5 19.5 22.9 - - -
NFST

exp 21.4 24.6 17.5 14.0 19.4 32.2 29.5 37.3 31.4 39.4

svmml 20.0 18.8 24.8 4.1 18.7 20.6 17.7 25.1 28.3 33.7

KISSME 5.0 6.9 7.6 8.5 6.3 5.4 9.9 4.9 2.3 4.4

XQDA 18.0 17.3 21.3 5.8 13.3 28.5 15.2 34.8 28.6 34.3
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Table 5.6: Rank 1 results from all feature/method combinations for DukeMTMC4ReID dataset.
The best result for each metric learning is marked in red and the second best is in blue. The best
combination across the whole dataset is mark in bold red.

DukeMTMC4ReID Kernel HistLBP ELF LDFV gBiCov SDC LOMO WHOS GOG moM moMaGO

FDA 19.1 22.2 23.7 17.2 22.8 20.7 23.7 26.3 32.7 35.6

LFDA 19.2 22.6 25.5 18.8 22.9 22.1 24.9 27.6 34.2 36.6

` 17.0 18.8 31.9 17.0 21.3 31.1 30.8 42.3 41.7 49.5

χ2 27.3 27.3 - 14.3 27.8 31.4 34.2 - - -

Rχ2 32.2 29.4 - 14.4 29.7 31.2 34.9 - - -
kLFDA

exp 28.9 26.4 37.3 15.0 25.1 34.4 33.9 45.2 45.5 52.2

PCCA 15.8 17.3 17.3 11.4 17.4 17.7 21.1 22.5 29.9 33.3

` 13.1 14.7 22.7 10.5 15.0 25.1 22.5 33.2 29.1 34.2

χ2 20.4 21.4 - 10.3 21.0 24.2 25.2 - - -

Rχ2 23.4 23.4 - 12.3 23.7 26.5 28.4 - - -
kPCCA

exp 18.4 17.7 25.0 13.4 19.5 27.6 28.0 34.1 30.7 35.9

` 13.5 14.8 22.9 10.4 15.8 25.1 22.2 33.0 28.5 34.4

χ2 20.2 21.4 - 10.2 21.0 24.1 25.2 - - -

Rχ2 23.2 22.8 - 12.4 23.7 26.2 28.5 - - -
rPCCA

exp 18.7 17.8 26.0 13.5 18.6 27.3 28.0 35.9 33.0 38.5

MFA 17.4 18.0 20.4 17.3 16.6 16.1 15.9 13.6 13.6 11.0

` 22.1 22.4 32.5 14.6 22.1 30.8 30.3 41.5 41.1 48.7

χ2 31.2 30.4 - 12.9 30.1 31.8 34.2 - - -

Rχ2 34.8 32.2 - 16.2 31.2 31.3 34.8 - - -
kMFA

exp 30.4 26.7 37.0 15.1 26.3 34.7 34.9 45.7 45.7 52.2

` 0.1 0.1 0.1 0.1 0.1 0.4 0.0 0.0 0.4 1.9

χ2 1.3 2.8 - 1.0 1.8 1.8 2.4 - - -

Rχ2 5.3 5.5 - 1.6 8.2 19.6 12.7 - - -
NFST

exp 33.0 17.2 40.0 14.5 25.5 43.4 42.6 49.9 51.2 56.9

svmml 4.1 9.6 33.7 2.2 15.3 11.4 19.5 26.9 22.4 34.3

KISSME 3.0 6.2 4.6 12.3 3.9 3.6 9.2 2.1 0.6 1.4

XQDA 10.2 21.3 28.1 1.9 21.6 28.8 29.2 35.7 34.1 48.7
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Figure 5.5: CMC curves for the benchmark on the DukeMTMC4ReID dataset. The top 10 performing
algorithms are shown in color and the rest are shown in gray. Numbers in the brackets in the legend
are the corresponding mAP value

learning methods except KISSME. Among the other features, either GOG or moM takes the sec-

ond best performance, except for KISSME in Airport dataset and MFA, SVMML and KISSME

in DukeMTMC4ReID dataset. This observation confirms the power of statistical moment model-

ing in feature representation for re-ID. Following them, the second tier features are LOMO and

WHOS. LOMO also takes advantage of the hierarchical structure by aggregating the local patch

representations along the same height. WHOS weights each pixel with a spatial Gaussian mask,

which is similar to the patch weights in GOG and moM. This suggests the hierarchical structure with

background subtraction will benefit the feature extraction in re-ID.

Next, we analyze the performance of different metric learning methods. NFST with

exponential kernel achieves the best performance in both benchmark datasets. kLFDA and kMFA

with exponential kernel obtain the second best results. It is interesting to note that all these three

algorithms learn the distance metric by solving some form of generalized eigenvalue decomposition

problems, similar to traditional Fisher discriminant analysis. While kLFDA and kMFA directly

employ Fisher-type objective functions, NFST uses the Foley-Shannon transform [121], which is very

closely related to the Fisher discriminant analysis. This suggests that the approach of formulating
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discriminant objective functions in terms of data scatter matrices is most suitable to the re-id problem.

37



Chapter 6

MoNet: Moment Embedding Network

Bilinear pooling has been recently proposed as a feature encoding layer, which can be

used after the convolutional layers of a deep network, to improve performance in multiple vision

tasks. Different from conventional global average pooling or fully connected layers, bilinear pooling

gathers 2nd order information in a translation invariant fashion. However, a serious drawback of

this family of pooling layers is their dimensionality explosion. Approximate pooling methods with

compact properties have been explored towards resolving this weakness. Additionally, recent results

have shown that significant performance gains can be achieved by adding 1st order information and

applying matrix normalization to regularize unstable higher order information. However, combining

compact pooling with matrix normalization and other order information has not been explored until

now. In this section, we unify bilinear pooling and the global Gaussian embedding layers through

the empirical moment matrix. In addition, we propose a novel sub-matrix square-root layer, which

can be used to normalize the output of the convolution layer directly and mitigate the dimensionality

problem with off-the-shelf compact pooling methods.

6.1 Introduction

Embedding local representations of an image to form a feature that is representative yet

invariant to nuisance noise is a key step in many computer vision tasks. Before the phenomenal

success of deep convolutional neural networks (CNN) [25], researchers tackled this problem with

handcrafted consecutive independent steps. Remarkable works include HOG [122], SIFT [16],

covariance descriptor [23], VLAD [21], Fisher vector [9] and bilinear pooling [27]. Although CNNs

are trained from end to end, they can be also viewed as two parts, where the convolutional layers are

38



CHAPTER 6. MONET: MOMENT EMBEDDING NETWORK

Table 6.1: Comparison of 2nd order statistic information based neural networks. BCNNonly has
2nd order information and does not use matrix normalization. Both improved BCNN (iBCNN) and
G2DeNet take advantage of matrix normalization but suffer from large dimensionality because they
use the square-root of a large pooled matrix. Our proposed MoNet, with the help of a novel sub-
matrix square-root layer, can normalize the local features directly and reduce the final representation
dimension significantly by substituting the fully bilinear pooling with compact pooling.

1st order Matrix Compact

moment normalization capacity

BCNN [28, 31]

iBCNN [35]

G2DeNet [11]

MoNet

…

CNN
Sub-matrix 
square-root

W⨉H⨉C W⨉H⨉(C+1)

Homogenous 
mapping 

W⨉H⨉(C+1)

(C+1)⨉(C+1)

…

D

… …sgnsqrt L2norm

sgnsqrt L2norm

classifier

k

classifier

kMatrix normalization

Element
normalization

OR

Figure 6.1: Architecture of the proposed moments-based network MoNet. With the proposed
sub-matrix square-root layer, it is possible to perform matrix normalization before bilinear pooling
or further apply compact pooling to reduce the dimensionality dramatically without undermining
performance.
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feature extraction steps and the later fully connected (FC) layers are an encoding step. Several works

have been done to explore substituting the FC layers with conventional embedding methods in both

two-stage fashion [123, 124] and end-to-end trainable way [28, 30].

Bilinear CNN (BCNN) was first proposed by Lin et al. [28] to pool the second order

statistics information across the spatial locations. Bilinear pooling has been proven to be successful

in many tasks, including fine-grained image classification [34, 31], large-scale image recognition

[125], segmentation [30], visual question answering [126, 127], face recognition [128] and artistic

style reconstruction [129]. Wang et al. [11] proposed to also include the 1st order information

by using a Gaussian embedding in G2DeNet. It has been shown that the normalization method is

also critical to these CNNs’ performance. Two normalization methods have been proposed for the

bilinear pooled matrix, M = 1
nXTX, where X ∈ Rn×C represents the local features. On one hand,

because M is Symmetric Positive Definite (SPD), Ionescu et al. [30] proposed to apply matrix-

logarithm to map the SPD matrices from the Riemannian manifold to an Euclidean space, followed

by log(M) = UM log(SM )UT
M with M = UMSMUT

M . On the other hand, [11, 35] proposed

matrix-power to scale M non-linearly with Mp = UMSpMUT
M . In both works, matrix-power was

shown to have better performance and numerically stability than the matrix-logarithm. In addition, Li

et al. [125] provided theoretical support on the superior performance of matrix-power normalization

in solving a general large-scale image recognition problem.

A critical weakness of the above feature encoding is the extremely high dimensionality

of the encoded features. Due to the tensor product1, the final feature dimension is C2 where C is

the number of feature channels of the last convolution layer. Even for relatively low C = 512 as in

VGG-16 [2], the dimensionality of the final feature is already more than 262K. This problem can be

alleviated by using random projections [31], tensor sketching [31, 130], and the low rank property

[34]. However, because the matrix-power normalization layer is applied on the pooled matrix M, it

is non-trivial to combine matrix normalization and compact pooling to achieve better performance

and reduce the final feature dimensions at the same time.

In this paper, we propose a new architecture, MoNet, that integrates matrix-power normal-

ization with Gaussian embedding. To this effect, we re-write the formulation of G2DeNet using the

tensor product of the homogeneous padded local features to align it with the architecture of BCNN so

that the Gaussian embedding operation and bilinear pooling are decoupled. Instead of working on the

bilinear pooled matrix M, we derive the sub-matrix square-root layer to perform the matrix-power
1We show that the Gaussian embedding can be written as a tensor product in sec. 6.3.2.1 In the following sections, we

will use tensor product and bilinear pooling interchangeably.
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normalization directly on the (in-)homogeneous local features. With the help of this novel layer,

we can take advantage of compact pooling to approximate the tensor product, but with much fewer

dimensions.

The main contributions of this work are three-fold:

• We unify the G2DeNet and bilinear pooling CNN using the empirical moment matrix and

decouple the Gaussian embedding from bilinear pooling.

• We propose a new sub-matrix square-root layer to directly normalize the features before the bi-

linear pooling layer, which makes it possible to reduce the dimensionality of the representation

using compact pooling.

• We derive the gradient of the proposed layer using matrix back propagation, so that the whole

proposed moments embedding network “MoNet” architecture can be optimized jointly.

6.2 Related Work

Bilinear pooling was proposed by Tenenbaum et al. [24] to model two-factor structure

in images to separate style from content. Lin et al. [28] introduced it into a convolutional neural

network as a pooling layer and improved it further by adding matrix power normalization in their

recent work [35]. Wang et al. [11] proposed G2DeNet with Gaussian embedding, followed by

matrix normalization to incorporate 1st order moment information and achieved the state-of-the-art

performance. In a parallel research track, low dimension compact approximations of bilinear pooling

have been also explored. Gao et al. [31] bridged bilinear pooling with a linear classifier with a

second order polynomial kernel by adopting the off-the-shelf kernel approximation methods Random

MacLaurin [32] and Tensor Sketch [33] to pool the local features in a compact way. Cui [130]

generalized this approach to higher order polynomials with Tensor Sketch. By combining with

bilinear SVM, Kong et al. [34] proposed to impose a low-rank constraint to reduce the number of

parameters. However, none of these approaches can be easily integrated with matrix normalization

because of the absence of a bilinear pooled matrix.

Lasserre et al. [131] proposed to use the empirical moment matrix formed by explicit

in-homogeneous polynomial kernel basis for outlier detection. Sznaier et al. [132] improved the

performance for the case of data subspaces, by working on the singular values directly. In [117], the

empirical moments matrix was applied as a feature embedding method for the person re-identification

problem and it was shown that the Gaussian embedding [44] is a special case when the moment
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matrix order equals to 1. However, both of these works focus on a conventional pipeline and did not

bring moments to modern CNN architectures.

Ionescu et al. [30] introduced the theory and practice of matrix back-propagation for

training CNNs, which enable structured matrix operations in deep neural networks training. Both

[35] and [11] used it to derive the back-propagation of the matrix square-root and matrix logarithm

for a symmetric matrix. Li et al. [125] applied a generalized p-th order matrix power normalization

instead of the square-root. However, in our case, since we want to apply the matrix normalization

directly on a non-square local feature matrix, we cannot plug-in the equation directly from previous

works.

6.3 MoNet Architecture

The overview of the proposed MoNet architecture is shown in Fig. 6.1. For an input

image I, the output of the last convolution layer after the ReLU, X, consists of local features xi,

across spatial locations i = 1, 2, . . . , n. Then, we introduce a homogeneous mapping (HM) layer

to disentangle the tensor product operator. After that, a novel sub-matrix square-root (Ssqrt) layer

is applied to directly normalize the feature vector before the tensor product. Finally, a compact

bilinear pooling layer pools all n features across all spatial locations, followed by an element-wise

square-root regularization and `2 normalization before the final fully-connected layer. Next, we will

detail the design of each block.

6.3.1 Homogeneous mapping layer

Since the global Gaussian embedding layer used in G2DeNet entangles the tensor product

operator, one cannot directly incorporate compact bilinear pooling. With the help of the proposed

HM layer, we can re-write the Gaussian embedding layer with a HM layer followed by a tensor

product, as explained next.

Assume X ∈ Rn×C , corresponding to n features with dimension C and n > C, mean

µ and covariance Σ. The homogeneous mapping of X is obtained by padding X with an extra

dimension set to 1. For the simplicity of the following layers, instead of applying the conventional

bilinear pooling layer as in [28], we also divide the homogeneous feature by the square-root of the

number of samples. Then, the forward equation of the homogeneous mapping layer is:

X̃ =
1√
n

[1|X] ∈ Rn×(C+1) (6.1)
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The tensor product of X̃ can be written as

M = X̃T X̃ =

 1 µ

µT 1
nXTX

 (6.2)

where µ = 1
n

∑n
1 X. Since 1

nXTX = Σ + µTµ, Eq. 6.2 is the Gaussian embedding method used in

G2DeNet [11]. One can also show that the conventional bilinear pooling layer is equal to the tensor

product of the in-homogeneous feature matrix.

6.3.2 Sub-matrix square-root layer

Matrix normalization in iBCNN and G2DeNet requires the computation of the singular

value decomposition (SVD) of the output of the tensor product, which prevents the direct use of

compact bilinear pooling. We will address this issue by incorporating a novel layer, named sub-

matrix square-root (Ssqrt) layer, to perform the equivalent matrix normalization before the tensor

product. This choice is supported by experimental results in [11, 35] showing that the matrix square-

root normalization is better than the matrix logarithm normalization for performance and training

stability.

6.3.2.1 Forward propagation

Recall that given the SVD of a SPD matrix, Q = UQSQUT
Q, the square root of Q is

defined as

Q
1
2 = UQS

1
2
QUT

Q (6.3)

where S
1
2
Q is computed by taking the square root of its diagonal elements.

Consider now the SVD of X̃ = USVT . Then, we have

M = X̃T X̃ = VSTUTUSVT (6.4)

and since UTU = I and STS is a square matrix:

M
1
2 = V(STS)

1
2 VT (6.5)

Note that S ∈ Rn×(C+1), n > C + 1 and hence its square root is not well defined. We introduce a

helper matrix A to keep all non-zero singular values in S as follows:

S = AS̃,A = [IC+1|0]T (6.6)
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where S̃ ∈ R(C+1)×(C+1) is a square diagonal matrix and IC+1 is the (C + 1)× (C + 1) identity

matrix. Substituting Eq. (6.6) in Eq. (6.5), we have

M
1
2 = V(S̃ATAS̃)

1
2 VT = VS̃

1
2 S̃

1
2 VT (6.7)

since ATA = IC+1. To keep the same number of samples for the input and output of this layer, we

finally re-write Eq. (6.5) in the following tensor product format:

M
1
2 = YTY (6.8)

where the output Y is defined as Y = AS̃
1
2 VT , allowing us to perform matrix normalization directly

on the features X̃.

Note that because in most modern CNNs, n cannot be much greater than C and the features

after ReLU tend to be sparse, X̃ is usually rank deficient. Therefore, we only use the non-zero

singular values and singular vectors. Then, the forward equation of the sub-matrix square-root layer

can be written as

Y = A:,1:eS̃
1
2
1:eV

T
:,1:e (6.9)

where e is the index of the smallest singular value greater than ε 2.

6.3.2.2 Backward propagation

We will follow the matrix back propagation techniques proposed by Ionescu et al. [30] to

derive the equation of the back propagation path for the sub-matrix square-root layer.

For a scalar loss L = f(Y), we assume ∂L
∂Y is available when we derive the back propaga-

tion. Let X̃ = USVT and U ∈ Rn×n. We can form U using block decomposition as U = [U1|U2]

with U1 ∈ Rn×(C+1) and U2 ∈ Rn×(n−C−1). The partial derivatives between a given scalar loss L

and X̃ are

∂L

∂X̃
=DVT + U(

∂L

∂S
−UTD)diagV

T+

2US(KT ◦
(

VT (
∂L

∂V
−VDTUS))

)
sym

VT
(6.10)

where ◦ represents element-wise product, (Q)sym
.
= 1

2(QT + Q) and

D =

(
∂L

∂U

)
1

S̃−1 −U2

(
∂L

∂U

)T
2

U1S̃
−1 (6.11)

2We will omit the subscript in the following for a concise notation
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Kij =


1

s2i−s2j
i 6= j

0 i = j

(6.12)

From Eq. 6.9, we can compute the variation of Y as

dY =
1

2
AS̃−

1
2dS̃VT + AS̃

1
2dVT (6.13)

Based on the chain rule, the total variation can be written as

∂L

∂Y
: dY =

1

2

∂L

∂Y
: AS̃−

1
2dS̃VT +

∂L

∂Y
: AS̃

1
2dVT (6.14)

where : denotes the inner-product. After re-arrangement with the rotation properties of inner-product,

we re-write the above equation as

∂L

∂Y
: dY =

1

2
S̃−

1
2 AT ∂L

∂Y
V : dS̃ + S̃

1
2 AT ∂L

∂Y
: dVT (6.15)

Therefore, we have

∂L

∂S
= A

∂L

∂S̃
=

1

2
AS̃−

1
2 AT ∂L

∂Y
V (6.16)

∂L

∂V
= (

∂L

∂VT
)T = (

∂L

∂Y
)TAS̃

1
2 (6.17)

Finally, substituting Eq. 6.16 and Eq. 6.17 into Eq. 6.10 and considering ∂L
∂U = 0, we have

∂L

∂X̃
=U

(
1

2
AS̃−

1
2 AT ∂L

∂Y
V+

2S

[
KT ◦

(
VT

(
∂L

∂Y

)T
AS̃

1
2

)]
sym

VT

(6.18)

6.4 Compact pooling

Following the work in [31, 126], we adopt the Tensor Sketch (TS) method to approximate

bilinear pooling due to it better performance and lower computational and memory cost. Building up

on count sketch and FFT, one can generate a tensor sketch function s.t. 〈TS1(x), TS2(y)〉 ≈ 〈x, y〉2,

using Algorithm 2. The back-propagation of a TS layer is given by [31].

As shown in Table 6.2, with the techniques mentioned above, the proposed MoNet is

capable to solve the problem with much less computation and memory complexity than the other

BCNN based algorithms.
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Algorithm 2 Tensor Sketch approximation pooling
Require: x, projected dimension D

1: Generate randomly selected (but fixed) two pairs of hash functions ht ∈ RD and st ∈ RD where

t = 1, 2 and ht(i), st(i) are uniformly drawn from {1, 2, · · · , D} and {−1,+1}, respectively.

2: Define count sketch function Ψ(x, ht, st) = [ψ1(x), ψ2(x), · · · , ψD(x)]T where ψj(x) =∑
i:ht(i)=j

st(i)xi

3: Define TS(x) = FFT−1(FFT (Ψ(x, h1, s1) ◦ (Ψ(x, h2, s2)))) where ◦ denotes element-wise

multiplication.

Table 6.2: Dimension, computation and memory information for different network architectures we
compared in this paper. H,W and C represent the height, width and number of feature channels
for the output of the final convolution layer, respectively. k and D denote the number of classes and
projected dimensions for Tensor Sketch, respectively. Numbers inside brackets indicate the typical
value when the corresponding network was evaluated with VGG-16 model [2] on a classification
task with 1,000 classes. In this case, H = W = 13, C = 512, k = 1000, D = 10000 and all data
was stored with single precision.

BCNN [28] iBCNN [35] iBCNN TS G2DeNet [11] MoNet MoNet TS

Dimension C2 [262K] C2 [262K] D [10K] (C+1)2 [263K] (C+1)2 [263k] D [10k]

Parameter Memory 0 0 2C 0 0 2C

Computation O(HWC2) O(HWC2) O(HW (C +D logD)) O(HWC2) O(HWC2) O(HW (C +D logD))

Classifier Memory kC2 [1000MB] kC2 [1000MB] kD [40MB] k(C + 1)2 [1004MB] k(C + 1)2 [1004MB] kD [40MB]

46



Chapter 7

Fine-grained Classification

The fine-grained classification problem aims to distinguish the sub-category classes. For

instance, instead of classifying people, car and bird, it focus on discriminating the different models

of cars and different species of birds. The differences on view-point, pose and illumination lead to

large intra-class variances whereas the inter-class variance is usually very subtle. To alleviate these

nuisance noise, a two-step scheme has been explored. It utilizes parts localization and alignment

as the first step to reduce the intra-class variance and then trains a classifier in the second step.

Part-based R-CNN [133] extends the R-CNN [134] to detect the parts. Spatial transformer networks

[135] learns a model to transfer images to a canonical view prior classification. Recently, visual

attention was adopted for the fine-grained classification problem to locate the discriminant region

directly. Liu et al. [136] learns attention through the attribute description. Besides localizing the

attentions, diversified visual attention network [137] can maximize the discrimination between the

attentions at the same time. Except the above works, neural network with bilinear pooling layers

dominate the performance in several widely used datasets.

In this section, we will perform experiments on three widely used fine-grained classification

datasets to illustrate that our proposed architecture, MoNet, can achieve similar or better performance

than with the state-of-art G2DeNet. Furthermore, when combined with the compact pooling technique,

MoNet obtains comparable performance with encoded features with 96% less dimensions. Aligned

with other bilinear CNN based papers, we also evaluate the proposed MoNet with three widely

used fine-grained classification datasets. The experimental setups and the algorithm implementation

are described in detail in Sec. 7.1. Then, in Sec. 7.1.1, the experimental results on fine-grained

classification are presented and analyzed.
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Table 7.1: Basic statistics of the datasets used for evaluation

Datasets # training # testing # classes

CUB [138] 5,994 5,794 200

Aircraft [139] 6,667 3,333 100

Cars [140] 8,144 8,041 196

7.1 Experimental setup

We evaluated MoNet on three widely used fine-grained classification datasets. Different

from general object recognition tasks, fine-grained classification usually tries to distinguish objects

at the sub-category level, such as different makes of cars or different species of birds. The main

challenge of this task is the relatively large inter-class and relatively small intra-class variations.

In all experiments, the 13 convolutional layers of VGG-16 [2] are used as the local feature

extractor, and their outputs are used as local appearance representations. These 13 convolution

layers are trained with ImageNet [141] and fine tuned in our experiments with three fine-grained

classification datasets.

7.1.1 Datasets

Caltech-UCSD birds (CUB) [138] contains 200 species, mostly north-American, of birds.

Being consistent with other works, we also use the 2011 extension with doubled number samples.

FGVC-Aircraft Benchmark (Aircraft) [139] is a benchmark fine-grained classification

dataset with different aircrafts with various models and manufacturers.

Stanford cars (Cars) [140] contains images of different classes of cars at the level of

make, model and year.

We use the provided train/test splits for all three datasets. Detailed information is given in

Table. 7.1 and Fig. 7.1 shows sample images.

7.1.2 Different pooling methods

Bilinear pooling (BCNN): The VGG-16 based BCNN [28] is utilized as the baseline

pooling method, which applies the tensor product on the output of the conv5 3 layer with ReLU

activation. The dimension of the final representation is 512× 512 ≈ 262K and the number of the
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Figure 7.1: Sample images from the fine-grained classification datasets. From left to right, each
column corresponds to CUB, Aircraft and Cars, respectively.
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Table 7.2: Experimental results for MoNet variants. Modifiers ‘2’ and ’U’ indicate that only 2nd
order moments are incorporated during feature embedding, and that no normalization was used,
respectively. The abbreviations for proposed layers are denoted as: SSqrt: sub-matrix square root;
HM: Homogeneous mapping. The best result in each column is marked in red.

New name Missing layers CUB Airplane Cars

Bilinear TS Bilinear TS Bilinear TS

MoNet-2U HM, Ssqrt 85.0 85.0 86.1 86.1 89.6 89.5

MoNet-2 HM 86.0 85.7 86.7 86.7 90.5 90.3

MoNet-U Ssqrt 82.8 84.8 84.4 87.2 88.8 90.0

MoNet - 86.4 85.7 89.3 88.1 91.8 90.8

linear classifier parameters is k × 262K, where k is the number of classes. To be fair, the latest

results from the authors’ project page [142] are compared.

Improved bilinear pooling (iBCNN): Lin et al. [35] improved the original BCNN by

adding the matrix power normalization after the bilinear pooling layer. We compare the results

reported in [35] with VGG-16 as the back-bone network.

Global Gaussian distribution embedding (G2DeNet): Instead of fully bilinear pooling,

G2DeNet pools the local features with a global Gaussian distribution embedding method, followed

by a matrix square-root normalization. Since it includes the first order moment information, the

dimension of the final feature is slightly greater than BCNN and iBCNN. The experiment results

with “w/o BBox” configuration in [11] are compared in this paper.

Proposed moment embedding network (MoNet) and its variants: We implemented the

proposed MoNet architecture with structure as shown in Fig. 6.1 and fine-tuned the whole network

in an end-to-end fashion. When using bilinear pooling, the feature dimensionality, computation

and memory complexity are the same as G2DeNet. To evaluate the effectiveness of the proposed

layers HM and Ssqrt, we also tested MoNet variants. Depending on the left-out layer, we can have

four different variants in total. Modifiers ‘2’ and ’U’ indicate that only 2nd order moments are

incorporated during feature embedding, and that no normalization was used, respectively.

Tensor Sketch compact pooling (TS): When building the network with compact pooling,

the TS layer [31] was added after the sub-matrix square-root layer. The projection dimension D was

selected empirically for MoNet and its variants.
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7.1.3 Implementation details

Using a large enough number of samples is important to estimate stable and meaningful

statistical moment information. The input images are resized to 448× 448 in all the experiments,

which produces a 28 × 28 × 512 local feature matrix after conv5 3 for each image. Following

common practice [11, 130], we first resize the image with a fixed aspect-ratio, such as the shorter

edge reaches to 448 and then utilized a center crop to resize the image to 448× 448. During training,

random horizontal flipping was applied as data augmentation. Different from [35] with VGG-M, no

augmentation is applied during testing.

To avoid rank deficiency, the singular value threshold σ was set to 10−5 for both forward

and backward propagation, which results in 10−10 for the singular value threshold of the tensor

product matrix. The projected dimension in Tensor Sketch was fixed to D = 104, which satisfies

C < D � C2. For a smooth and stable training, we applied gradient clipping[143] to chop all

gradients in the range [−1, 1].

As suggested by [35, 11], all pooling methods were followed by an element-wise sign

kept squre-root ys = sign(y)
√

y and `2 normalization yn = ys/||ys||. For the sake of a smooth

training, the element-wise square-root is also applied on local appearence features [11].

The weights of the VGG-16 convolutional layers are pretrained on ImageNet classification

dataset. We first warm-started by fine-tuning the last linear classifier for 300 epochs. Then, we

fine-tuned the whole network end-to-end with the learning rate as 0.001 and batch size as 16. The

momentum was set to 0.9 and the weight decay was set to 0.0005. Most experiments converged to a

local optimum after 50 epochs.

The proposed MoNet was implemented with MatConvNet [144] and Matlab 2017a1.

Because of the numerical instability of SVDs, as suggested by Ionescu et al. [30], the sub-matrix

square-root layer was implemented on CPU with double precision. The whole network was fine-tuned

on a Ubuntu PC with 64GB RAM and Nvidia GTX 1080 Ti.

7.2 Experimental results

In Table 7.2 and Table 7.3, the classification accuracy for each network is presented in a

row. Bilinear and TS denote fully bilinear pooling and tensor sketch compact pooling, respectively.
1Code is available at https://github.com/NEU-Gou/MoNet
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Table 7.3: Experimental results on fine-grained classification. Bilinear and TS represent fully bilinear
pooling and Tensor Sketch compact pooling respectively. The best performance in each column is
marked in red.

CUB Airplane Car

Bilinear TS Bilinear TS Bilinear TS

BCNN [28, 31] 84.0 84.0 86.9 87.2 90.6 90.2

MoNet-2U 85.0 85.0 86.1 86.1 89.6 89.5

iBCNN [35] 85.8 - 88.5 - 92.1 -

MoNet-2 86.0 85.7 86.7 86.7 90.5 90.3

G2DeNet [11] 87.1 - 89.0 - 92.5 -

MoNet 86.4 85.7 89.3 88.1 91.8 90.8

Other higher KP [130] - 86.2 - 86.9 - 92.6

order methods HOHC [145] 85.3 88.3 91.7

State-of-the-art MA-CNN [146] 86.5 89.9 92.8

Comparison with different variants: The variants MoNet-2U, MoNet-2, and MoNet,

when using bilinear pooling, are mathematically equivalent to BCNN, iBCNN, and G2DeNet,

respectively. Aligned with the observation in [35, 11], we also see a consistent performance gain

for both MoNet and MoNet-2 by adding the normalization sub-matrix square root (SSqrt) layer.

Specifically, MoNet-2 outperforms MoNet-2U by 0.6% to 1% with bilinear pooling and 0.6% to

0.8% with TS. Whereas MoNet outperforms MoNet-U by 3% to 4.9% with bilinear pooling and

0.8% to 0.9% with TS. This layer is more effective on MoNet than on MoNet-2. The reason for this,

is that mixing different order moments may make the embedded feature numerically unstable but

a good normalization helps overcome this issue. By adding the HM layer to incorporate 1st order

moment information, MoNet can achieve better results consistently when compared to MoNet-2,

in all datasets with both bilinear and compact pooling. Note that MoNet-U performs worse than

MoNet-2U, which actually illustrates the merit of a proper normalization.

Comparison with different architectures: Consistent with [35], matrix normalization

improves the performance by 1-2% on all three datasets. Our equivalent MoNet-2 achieves slightly

better classification accuracy (0.2%) on CUB dataset but performs worse on Airplane and Car datasets

when compared with iBCNN. We believe that this is due to the different approaches used to deal with

rank deficiency. In our implementation, the singular value is hard thresholded as shown in Eq. 6.9,

while iBCNN [35] dealt with the rank deficiency by adding 1 to all the singular values, which is
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a relatively very small number compared to the maximum singular value (106). By adding the 1st

order moment information, G2DeNet outperforms iBCNN by around 1%, on all three datasets. By

re-writing the Gaussian embedding with tensor product of the homogeneous padded local features,

our proposed MoNet can obtain similar or slightly better classification accuracy when comparing

against G2DeNet. Specifically, the classification accuracy of MoNet is 0.3% higher on Airplane

dataset, but 0.7% lower on both CUB and Car datasets.

Comparison with fully bilinear pooling and compact pooling: As shown in [31], com-

pact pooling can achieve similar performance compared to BCNN, but with only 4% of the di-

mensionality. We also see a similar trend in MoNet-2U and MoNet-2. The classification accuracy

difference between the bilinear pooling and compact pooling version is less than 0.3% on all three

datasets. However, the performance gaps are relatively greater when we compare the different

pooling schemes on MoNet. Bilinear pooling improve the classification accuracy by 0.7%, 1.2%

and 1% than compact pooling on CUB, Airplane and Car datasets, respectively. However, with

compact pooling, the dimensionality of the final representation is 96% smaller. Although the final

fully bilinear pooled representation dimensions of MoNet-2 and MoNet are roughly the same, MoNet

utilizes more different order moments, which requires more count sketch projections to approximate

it. Thus, when fixing D = 10, 000 for both MoNet-2 and MoNet, the performance of MoNet with

compact pooling degraded. However, MoNet TS still out-performs MoNet-2 TS by 1.4% and 0.5%

on the Airplane and Car datasets, respectively.

Comparison with other methods: [130] and [145] are two other recent works that also

take into account higher order statistic information. Cui et al. [130] applied Tensor Sketch repetitively

to approximate up to 4th order explicit polynomial kernel space in a compact way. They obtained

better results for CUB and Car datasets compared against other compact pooling results, but notably

worse (1.2%) on the Airplane dataset. This may be due to two factors. First, directly utilizing

higher order moments without proper normalization leads to numerically instabilities. Second,

approximating higher order moments with limited number of samples is essentially an ill-posed

problem. Cai et al. [145] only utilize higher order self-product terms but not the interaction terms,

which leads to worse performance in all three datasets. Finally, the state-of-the-art MA-CNN [146]

achieves slightly better results on Airplane and Car datasets.
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Conclusion

In this dissertation, we proposed a feature embedding method with empirical moment

matrix. By incorporating higher order moments information, the proposed method can approximate

arbitrary distributions efficiently. We integrated this embedding method in conventional feature

extraction pipelines and tested it on re-ID. The novel feature moM generalizes the Gaussian as-

sumption used in previous work by using the empirical moment matrix. The extensive experimental

results on five datasets illustrate the effectiveness of this feature and of combining it with GOG

feature sets, achieving a new state-of-the-art performance for three datasets. Directly comparing

re-ID algorithms reported in the literature has become difficult since a wide variety of features,

experimental protocols, and evaluation metrics are employed. To address this need, we presented

two large-scale datasets collected with real surveillance camera networks and established a reliable

benchmark with single-shot re-ID algorithms. The experimental results illustrate the effectiveness of

the statistical empirical moment matrix feature in re-ID and the discussions on the benchmark results

shed light on the future design for feature extraction and metric learning algorithms in re-ID.

We also fused the empirical moment matrix embedding into the modern CNN architecture

with novel layers. We reformulated the Gaussian embedding using the empirical moment matrix

and decoupled the bilinear pooling step out. With the help of a novel sub-matrix square-root layer,

our proposed network MoNet can take advantages of different order moments, matrix normalization

as well as compact pooling. Experiments on three widely used fine-grained classification datasets

demonstrate that MoNet can achieve similar or better performance when comparing with G2DeNet

and retain comparable results with only 4% of the feature dimensions.

There are several open problems and possible extensions following this dissertation. Future

works include:
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• Compact moment representation: Since the dimensionality of the empirical moment matrix

grows exponentially with the order and local descriptor size, designing a compact representa-

tion for it is an emerging direction.

• Moment of moment: For moM feature, instead of using an on-manifold mean, with the help of

compact moment representation, one can build the empirical moment matrix on the second

level as well to model the global distribution of the descriptors of the patches.

• Deep benchmark: Since the deep neural network models dominate the re-ID literature in recent

years, extending the re-ID benchmark to include state-of-the-art deep neural network models

will make the benchmark more comprehensive.

• Higher order MoNet: Given the promising results of applying higher order moment matrix

in conventional feature extraction pipelines, generalizing the homogeneous mapping layer to

incorporate higher order information can be one possible direction.
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[44] M. Lovrić, M. Min-Oo, and E. A. Ruh, “Multivariate normal distributions parametrized as

a riemannian symmetric space,” Journal of Multivariate Analysis, vol. 74, no. 1, pp. 36–48,

2000.

[45] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, “Log-euclidean metrics for fast and simple

calculus on diffusion tensors,” Magnetic resonance in medicine, vol. 56, no. 2, pp. 411–421,

2006.

[46] N. Gheissari, T. B. Sebastian, and R. Hartley, “Person reidentification using spatiotemporal

appearance,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’06), vol. 2. IEEE, 2006, pp. 1528–1535.

[47] D. Gray and H. Tao, “Viewpoint invariant pedestrian recognition with an ensemble of localized

features,” in ECCV, 2008.

[48] B. Prosser, W.-S. Zheng, S. Gong, and T. Xiang, “Person re-identification by support vector

ranking.” in BMVC, 2010.

[49] W.-S. Zheng, S. Gong, and T. Xiang, “Person re-identification by probabilistic relative distance

comparison,” in CVPR, 2011.

[50] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani, “Person re-identification by

symmetry-driven accumulation of local features,” in Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 2360–2367.

[51] D. S. Cheng, M. Cristani, M. Stoppa, L. Bazzani, and V. Murino, “Custom pictorial structures

for re-identification.” in BMVC, 2011.

[52] T. Wang, S. Gong, X. Zhu, and S. Wang, “Person re-identification by video ranking,” in ECCV,

2014.

[53] S. Karanam, Y. Li, and R. J. Radke, “Person re-identification with discriminatively trained

viewpoint invariant dictionaries,” in ICCV, 2015.

[54] K. Liu, B. Ma, W. Zhang, and R. Huang, “A spatio-temporal appearance representation for

viceo-based pedestrian re-identification,” in ICCV, 2015.

[55] J. You, A. Wu, X. Li, and W.-S. Zheng, “Top-push video-based person re-identification,” in

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

60



BIBLIOGRAPHY

[56] L. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, and Q. Tian, “MARS: A video benchmark

for large-scale person re-identification,” in ECCV, 2016.

[57] R. Zhao, W. Ouyang, and X. Wang, “Unsupervised salience learning for person re-

identification,” in CVPR, 2013.

[58] C. Liang, B. Huang, R. Hu, C. Zhang, X. Jing, and J. Xiao, “A unsupervised person re-

identification method using model based representation and ranking,” in Proceedings of the

23rd ACM international conference on Multimedia. ACM, 2015, pp. 771–774.

[59] E. Kodirov, T. Xiang, and S. Gong, “Dictionary learning with iterative laplacian regularisation

for unsupervised person re-identification,” in BMVC, vol. 3, 2015, p. 8.

[60] E. Kodirov, T. Xiang, Z. Fu, and S. Gong, “Person re-identification by unsupervised l1 graph

learning,” in European Conference on Computer Vision. Springer, 2016, pp. 178–195.

[61] W. Li, R. Zhao, T. Xiao, and X. Wang, “DeepReId: Deep filter pairing neural network for

person re-identification,” in CVPR, 2014.

[62] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable person re-identification:

A benchmark,” in ICCV, 2015.

[63] E. Ahmed, M. Jones, and T. K. Marks, “An improved deep learning architecture for person

re-identification,” in CVPR, 2015.

[64] R. R. Varior, M. Haloi, and G. Wang, “Gated siamese convolutional neural network architecture

for human re-identification,” in European Conference on Computer Vision. Springer, 2016,

pp. 791–808.

[65] R. R. Varior, B. Shuai, J. Lu, D. Xu, and G. Wang, “A siamese long short-term memory archi-

tecture for human re-identification,” in European Conference on Computer Vision. Springer,

2016, pp. 135–153.

[66] J. X. W. G. Chi Su, Shiliang Zhang and Q. Tian, “Deep attributes driven person re-

identification,” in European Conference on Computer Vision. Springer, 2016.

[67] N. McLaughlin, J. Martinez del Rincon, and P. Miller, “Recurrent convolutional network

for video-based person re-identification,” in The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2016.

61



BIBLIOGRAPHY

[68] S. Gong, M. Cristani, S. Yan, and C. C. Loy, Person re-identification. Springer, 2014, vol. 1.

[69] S. Karanam, M. Gou, Z. Wu, A. Rates-Borras, O. Camps, and R. J. Radke, “A comprehensive

evaluation and benchmark for person re-identification: Features, metrics, and datasets,” arXiv

preprint arXiv:1605.09653, 2016.

[70] R. Vezzani, D. Baltieri, and R. Cucchiara, “People reidentification in surveillance and forensics:

A survey,” ACM Computing Surveys (CSUR), vol. 46, no. 2, p. 29, 2013.

[71] L. Zheng, Y. Yang, and A. G. Hauptmann, “Person re-identification: Past, present and future,”

arXiv preprint arXiv:1610.02984, 2016.

[72] B. Ma, Y. Su, and F. Jurie, “Bicov: a novel image representation for person re-identification

and face verification,” in British Machive Vision Conference, 2012, pp. 11–pages.

[73] Y. Yang, J. Yang, J. Yan, S. Liao, D. Yi, and S. Z. Li, “Salient color names for person

re-identification,” in Computer Vision–ECCV 2014. Springer, 2014, pp. 536–551.

[74] R. Zhao, W. Ouyang, and X. Wang, “Person re-identification by salience matching,” in

Computer Vision (ICCV), 2013 IEEE International Conference on. IEEE, 2013, pp. 2528–

2535.

[75] M. Koestinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof, “Large scale metric

learning from equivalence constraints,” in CVPR, 2012.

[76] S. Paisitkriangkrai, C. Shen, and A. van den Hengel, “Learning to rank in person re-

identification with metric ensembles,” in CVPR, 2015.

[77] S. Pedagadi, J. Orwell, S. Velastin, and B. Boghossian, “Local fisher discriminant analysis for

pedestrian re-identification,” in CVPR, 2013.

[78] F. Xiong, M. Gou, O. Camps, and M. Sznaier, “Person re-identification using kernel-based

metric learning methods,” in ECCV, 2014.

[79] L. Zhang, T. Xiang, and S. Gong, “Learning a discriminative null space for person re-

identification,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

June 2016.

62



BIBLIOGRAPHY

[80] Y. Zhang, B. Li, H. Lu, A. Irie, and X. Ruan, “Sample-specific svm learning for person re-

identification,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

June 2016.

[81] G. Lisanti, I. Masi, A. D. Bagdanov, and A. Del Bimbo, “Person re-identification by iterative

re-weighted sparse ranking,” T-PAMI, vol. 37, no. 8, pp. 1629–1642, 2015.

[82] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng, “Person re-identification by multi-

channel parts-based cnn with improved triplet loss function,” in The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), June 2016.

[83] A. Mignon and F. Jurie, “PCCA: A new approach for distance learning from sparse pairwise

constraints,” in CVPR, 2012.
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